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LECTURE 1

Introduction

Date: 9/24/2018
Scribe: Andrea Ottolini

1.1. Preview

This course is intended to be an introduction to quantum field theory
for mathematicians. Although quantum mechanics has been successful in
explaining many microscopic phenomena which appear to be genuinely ran-
dom (i.e., the randomness does not stem from the lack of information about
initial condition, but it is inherent in the behavior of the particles), it is not
a good theory for elementary particles, mainly for two reasons:

• It does not fit well with special relativity, in that the Schrödinger
equation is not invariant under Lorentz transformations.
• It does not allow creation or annihilation of particles.

Since in lots of interesting phenomena (e.g., in colliders) particles travel at
speeds comparable to the speed of light, and new particles appear after they
collide, these aspects have to be taken into account.

Quantum field theory (QFT) is supposed to describe these phenomena
well, yet its mathematical foundations are shaky or non-existent. The fun-
damental objects in quantum field theory are operator-valued distributions.
An operator-valued distribution is an abstract object, which when integrated
against a test function, yields a linear operator on a Hilbert space instead
of a number.

For example, we will define operator-valued distributions a and a† on
R3 which satisfy that for all p,p′ ∈ R3,

[a(p), a(p′)] = 0, [a†(p), a†(p′)] = 0,

[a(p), a†(p′)] = (2π)3δ(3)(p− p′)1,

where [A,B] = AB − BA is the commutator, δ(3) is the Dirac δ on R3,
and 1 denotes the identity operator on an unspecified Hilbert space. For
someone with a traditional training in mathematics, it may not be clear
what the above statement means. Yet, physics classes on QFT often begin
by introducing these operator-valued distributions as if their meaning is
self-evident. One of the first objectives of this course is to give rigorous
meanings to a and a†, and define the relevant Hilbert space. It turns out
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2 1. INTRODUCTION

that the correct Hilbert space is the so-called bosonic Fock space, which we
will define.

Using a and a†, physicists then define the massive scalar free field ϕ with
mass parameter m, as

ϕ(t,x) =

∫
R3

d3p

(2π)3

1√
2ωp

(
e−itωp+ix·pa(p) + eitωp−ix·pa†(p)

)
,

where

ωp =
√
m2 + |p|2.

Here x · p is the scalar product of x and p, and |p| is the Euclidean norm
of p. This is an operator-valued distribution defined on spacetime.

Again, it is not at all clear what this means, nor the purpose. We will
give a rigorous meaning to all of these and understand where they come
from. We will then move on to discuss interacting quantum fields, where
the Hilbert space is not clear at all, since the Fock space, which does the job
for the free field, is not going to work. Still, computations can be carried
out, scattering amplitudes can be obtained, and unrigorous QFT theory
leads to remarkably correct predictions for a wide range of phenomena. We
will talk about all this and more. In particular, we will talk about ϕ4 theory,
one-loop renormalization, and the basics of quantum electrodynamics.

1.2. A note on mathematical rigor

Much of quantum field theory is devoid of any rigorous mathematical
foundation. Therefore we have no option but to abandon mathematical
rigor for large parts of this course. There will be parts where we will not
prove theorems with full rigor, but it will be clear that the proofs can be
made mathematically complete if one wishes to do so. These are not the
problematic parts. However, there will be other parts where no one knows
how to put things in a mathematically valid way, and they will appear
as flights of fancy to a mathematician. Yet, concrete calculations yielding
actual numbers can be carried out in these fanciful settings, and we will
go ahead and do so. These situations will be pointed out clearly, and will
sometimes be posed as open problems.

1.3. Notation

The following are some basic notations and conventions that we will
follow. We will need more notations, which will be introduced in later
lectures.

• Throughout these lectures, we will work in units where ~ = c = 1,
where ~ is Planck’s constant divided by 2π and c is the speed of
light.
• H is a separable complex Hilbert space.
• If a ∈ C, a∗ is its complex conjugate.



1.3. NOTATION 3

• The inner product of f, g ∈ H, denoted by (f, g), is assumed to be
antilinear in the first variable and linear in the second. In partic-
ular, if {en}∞n=1 is an orthonormal basis of H, and if f =

∑
αnen

and g =
∑
βnen, then (f, g) =

∑∞
n=1 α

∗
nβn.

• The norm of a state f is denoted by ‖f‖. A state f is called
normalized if ‖f‖ = 1.
• If A is a bounded linear operator on H, A† denotes its adjoint.
• If A is a bounded linear operator and A = A†, we will say that A

is Hermitian. We will later replace this with a more general notion
of ‘self-adjoint’.
• δ is the Dirac delta at 0, and δx is the Dirac delta at x. Among

the properties of the delta function, we will be interested in the
following two:∫ ∞

−∞
dzδ(x− z)δ(z − y)ξ(z) = δ(x− y)ξ(z),

δ(x) = lim
ε→0

∫
R

dy

2π
eixy−εy

2
=

1

2π

∫
R
dy eixy.

• f̂(p) =
∫
R dx e

−ixpf(x) is the Fourier transform of f .

Note that some of the definitions are slightly different than the usual math-
ematical conventions, such as that of the Fourier transform. Usually, it is
just a difference of sign, but these differences are important to remember.





LECTURE 2

The postulates of quantum mechanics

Date: 9/26/2018
Scribe: Sanchit Chaturvedi

2.1. Postulates 1–4

We will introduce our framework of quantum mechanics through a se-
quence of five postulates. The first four are given below.

P1 The state of a physical system is described by a vector in a separable
complex Hilbert space H.

P2 To each (real-valued) observable O corresponds a Hermitian opera-
tor A on H. (It can be a bounded linear operator such that A = A†

but not all A will be like this.)
P3 If A is the operator for an observable O then any experimentally

observed value of O must be an eigenvalue of A.
P4 Suppose that O is an observable with operator A. Suppose further

that A has an orthonormal sequence of eigenvectors {xn}∞n=1 with
eigenvalues {λn}. Suppose also that the system is in state ψ ∈ H.
Then the probability that the observed value of O = λ is given by∑

i:λi=λ
|(xi, ψ)|2
‖ψ‖2 .

These postulates will be slightly modified later, and replaced with more
mathematically satisfactory versions. P5 will be stated later in this lecture.

2.2. A simple example

Consider a particle with two possible spins, say 1 and −1. Then H = C2.
Consider the observable

O =

{
+1, if spin is 1,
−1, if spin is −1.

Suppose that we take the operator for this observable to be the matrix

A =

(
1 0
0 −1

)
This has eigenvectors (

1
0

)
,

(
0
1

)
5



6 2. THE POSTULATES OF QUANTUM MECHANICS

with eigenvalues 1,−1. If the state of the system is(
α1

α2

)
∈ C2,

then

Prob(O = 1) =
|α1|2

|α1|2 + |α2|2
and

Prob(O = −1) =
|α2|2

|α1|2 + |α2|2
.

2.3. Adjoints of unbounded operators

Definition 2.1. An unbounded operator A on a Hilbert space H is a
linear map from a dense subspace D(A) into H.

Definition 2.2. An unbounded operator is called symmetric if

(x,Ay) = (Ax, y) ∀x, y ∈ D(A).

Take any unbounded operator A with domain D(A). We want to define
the adjoint A†. We first define D(A†) to be the set of all y ∈ H such that

sup
x∈D(A)

|(y,Ax)|
‖x‖ <∞.

Then for y ∈ D(A†) define A†y as follows. Define a linear functional λ :
D(A)→ C as

λ(x) = (y,Ax).

Since y ∈ D(A†),

c := sup
x∈D(A)

|(y,Ax)|
‖x‖ <∞.

Thus ∀x, x′ ∈ D(A),

|λ(x)− λ(x′)| = |(y,A(x− x′))| ≤ c‖x− x′‖.
This implies that λ extends to a bounded linear functional on H. Hence
there exists unique z such that λ(x) = (z, x). Let A†y := z.

Definition 2.3. A symmetric unbounded operator is called self-adjoint
if D(A) = D(A†), and A† = A on this subspace.

(In practice we only need to verify D(A†) = D(A), since for any sym-
metric operator, D(A) ⊆ D(A†), and A† = A on D(A).)

Definition 2.4. An operator B is called an extension of A if D(A) ⊆
D(B) and A = B on D(A).

An example is if A is symmetric then A† is an extension of A.

Definition 2.5. A symmetric operatorA is called essentially self-adjoint
if it has a unique self-adjoint extension.
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2.4. Unitary groups of operators

Definition 2.6. A surjective linear operator U : H → H is called uni-
tary if ‖Ux‖ = ‖x‖ ∀x ∈ H.

Definition 2.7. A strongly continuous unitary group (U(t))t∈R is a
collection of unitary operators such that

• U(s+ t) = U(s)U(t) ∀s, t ∈ R, and
• for any x ∈ H the map t 7→ U(t)x is continuous.

2.5. Stone’s Theorem

There is a one-to-one correspondence between one parameter strongly
continuous unitary groups of operators on H and self-adjoint operators on
H. Given U , the corresponding self-adjoint operator A is defined as

Ax = lim
t→0

U(t)x− x
it

,

with D(A) = {x : the above limit exists}. (It is conventional to write U(t) =
eitA.) Conversely, given any self-adjoint operator A, there is a strongly
continuous unitary group (U(t))t∈R such that the above relation between A
and U is satisfied on the domain of A.

2.6. Postulate 5

P5 If the system is not affected by external influences then its state
evolves in time as ψt = U(t)ψ for some strongly continuous unitary
group U that only depends on the system (and not on the state).

By Stone’s theorem there exists a unique self-adjoint operator H such that
U(t) = e−itH . This H is called the ‘Hamiltonian’. The Hamiltonian satisfies

d

dt
U(t) = −iHU(t) = −iHe−itH

= −iU(t)H = −ie−itHH.
We will use the above relations extensively in the sequel.

Besides the five postulates stated above, there is also a sixth postulate
about collapse of wavefunctions that we will not discuss (or need) in these
lectures.





LECTURE 3

Position and momentum operators

Date: 9/26/2018
Scribe: Sky Cao

3.1. Looking back at Postulate 4

Suppose that A is a self-adjoint operator for an observable O with an
orthonormal sequence of eigenvectors u1, u2, . . . and eigenvalues λ1, λ2, . . ..
If the system is in state ψ, Postulate 4 says that the probability that the
observed value of O equals λ is given by∑

i:λi=λ
|(ui, ψ)|2
‖ψ‖2 .

From this, we get the expected value of O:

Eψ(O) =

∑∞
i=1 λi|(ui, ψ)|2
‖ψ‖2 =

(ψ,Aψ)

‖ψ‖2 .

Similarly,

Eψ(O2) =

∑∞
i=1 λ

2
i |(ui, ψ)|2
‖ψ‖2 =

(ψ,A2ψ)

‖ψ‖2 ,

and more generally

Eψ(Ok) =
(ψ,Akψ)

‖ψ‖2 ∀k.

Even more generally, for any α,

Eψ(eiαO) =
(ψ, eiαAψ)

‖ψ‖2 .

In certain situations, eiαA may be defined by Taylor series expansion. But
this is not required; in general we may use Stone’s theorem to make sense
of eiαA.

Now recall that the distribution of a random variable X is completely
determined by its characteristic function

φ(α) = E(eiαX).

This allows us to arrive at the following.

9



10 3. POSITION AND MOMENTUM OPERATORS

Better version of Postulate 4: Suppose that O is an observable with
operator A. If the system is in state ψ, then the characteristic function of
this observable at α ∈ R is given by

(ψ, eiαAψ)

‖ψ‖2 .

Similarly, we have better versions of the other postulates by replacing ‘Her-
mitian’ with ‘self-adjoint’ everywhere.

3.2. A non-relativistic particle in 1-D space

The Hilbert space is H = L2(R). The first observable is the position
observable. Its operator is denoted X, defined as

(Xψ)(x) = xψ(x).

The domain of X is

D(X) =

{
ψ ∈ L2(R) :

∫
x2|ψ(x)|2dx <∞

}
.

It can be verified that X is self-adjoint, and that X does not have an or-
thonormal sequence of eigenvectors in L2(R).

In physics, they say that X has ‘improper’ eigenfunctions. The Dirac δ
at x is an improper eigenfunction with eigenvalue x. That is,

Xδx = xδx.

We may verify this in the sense of distributions. For f a test function, we
have ∫

(Xδx)(y)f(y)dy =

∫
yδx(y)f(y)dy = xf(x).

On the other hand, ∫
xδx(y)f(y)dy = xf(x).

Thus Xδx = xδx.
Now suppose the state is ψ. What is the probability distribution of the

position of the particle? According to our better version of Postulate 4, the
characteristic function of the position variable at α ∈ R is

(ψ, eiαXψ)

‖ψ‖2 .

It is not hard to show that

(eiαXψ)(x) = eiαxψ(x),

and so the characteristic function is∫
eiαx|ψ(x)|2dx∫
|ψ(x)|2dx .
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Thus the probability density of the position is

|ψ(x)|2∫
|ψ(z)|2dz .

The ‘position eigenstates’ are δx, x ∈ R. To make this precise, let us approx-
imate δx(y) by

1√
2πε

e−(y−x)2/2ε

as ε → 0. This state has p.d.f. of the position proportional to e−(y−x)2/ε.
This probability distribution converges to the point mass at x as ε→ 0.

The second observable is the momentum observable. The momentum
operator is given by

Pψ = −i d
dx
ψ,

so notationally,

P = −i d
dx
.

We may take the domain of P to be

{ψ ∈ L2(R) : ψ′ ∈ L2(R)},
but then P will not be self-adjoint. However, one can show that P is es-
sentially self-adjoint, that is, there is a unique extension of P to a larger
domain where it is self-adjoint.

Using a similar procedure as with the position, we may show that the
probability density of the momentum is given by

|ψ̂(p)|2
‖ψ̂‖2

L2

,

where ψ̂ is the Fourier Transform of ψ. The (improper) momentum eigen-
state for momentum p is ψ(x) = eipx, because

Pψ = pψ.

Note that ψ is not in L2(R), but we may approximate

ψ(x) ≈ eipx−εx2

for ε small. The Fourier Transform of this function is

ψ̂(p′) =

∫
e−ip

′xeipxdx = 2πδ(p− p′),

which is proportional to the Dirac delta at p.





LECTURE 4

Time evolution

Date: 10/1/2018
Scribe: Jack Lindsey

4.1. Probability density of momentum

Let us continue our discussion about the 1D non-relativistic particle that
we started in the previous lecture. If the system is in state ψ, then we claim
that the probability density function of the momentum at p ∈ R is

|ψ̂(p)|2
‖ψ̂‖2

L2

,

where ψ̂ is the Fourier transform of ψ. Although a complete proof using
our version of Postulate 4 takes some work, it is easy to see why this is true
from the following sketch. First, observe that

P kψ = (−i)k d
k

dxk
ψ.

From this it follows that P̂ kψ(p) = pkψ̂(p). On the other hand, by Postulate
4, the expected value of the kth power of the momentum is

(ψ, P kψ)

‖ψ‖2
L2

.

By Parseval’s identity, this equals

(ψ̂, P̂ kψ)

‖ψ̂‖2
L2

=

∫ ∞
−∞

dp pk
|ψ̂(p)|2
‖ψ̂‖2

L2

.

This strongly indicates that the p.d.f. of the momentum is proportional to

|ψ̂(p)|2. A complete proof would require that we work with characteristic
functions instead of moments.

4.2. The uncertainty principle

Consider the improper state ψ(x) = δx0(x). The position of a particle

in this state is fully concentrated at x0. However, ψ̂(p) = e−ipx0 , which
means that the momentum of the particle is ‘uniformly distributed on the
real line’ — which does not make mathematical sense, but can be thought of
as an idealization of a very spread out probability distribution. On the other

13



14 4. TIME EVOLUTION

hand, if ψ(x) = eip0x, then the position variable has a similar uniform spread

on the real line, but ψ̂(p) = δ(p− p0), which means that the momentum is
fully concentrated at p0.

The above discussion indicates that it may be impossible to have a state
that localizes both the position and the momentum. Indeed, this is a re-
sult that can be proved in great generality, as follows. Consider a general
quantum system. Given an observable O with operator A, it follows from
Postulate 4 that if the system is in state ψ, then the standard deviation of
O is given by √

(ψ,A2ψ)

‖ψ‖2 − (ψ,Aψ)2

‖ψ‖4 .

Let us denote this standard deviation by ∆ψ(A). The following result is
known as the Heisenberg Uncertainty Principle (rigorous statement and
proof due to H. Weyl):

Theorem 4.1. For any self-adjoint A and B and any ψ ∈ D(A)∩D(B)
such that Aψ ∈ D(B) and Bψ ∈ D(A), we have

∆ψ(A)∆ψ(B) ≥ 1

4
|(ψ, [A,B]ψ)|2

where [A,B] = AB −BA.

Proof sketch. Apply the Cauchy–Schwarz inequality, starting from
the right-hand side and expanding. �

4.3. The uncertainty principle for position and momentum

Now let us see what the uncertainty principle gives for the position and
momentum operators in 1D. For any ψ, we have

(XPψ)(x) = X(−iψ′)(x) = −ixψ′(x).

On the other hand,

(PXψ)(x) = −i d
dx

(xψ(x)) = −ixψ′(x)− iψ(x).

Putting these together, we see that XP −PX = i ·1, where 1 is the identity
operator. Hence, by the uncertainty principle,

∆ψ(X)∆ψ(P ) ≥ 1

4

for all normalized ψ for which [X,P ]ψ is defined and in L2, in units where
~ = 1. For example, this holds for any Schwartz function ψ with L2 norm
equal to one. Note that this implies that position and momentum cannot be
simultaneously localized — the p.d.f. of at least one must have substantial
standard deviation.
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4.4. Free evolution in 1D

The evolution of the state of a particle in 1D in the absence of a potential
(i.e., free evolution) is governed by the Hamiltonian

H = − 1

2m

d2

dx2
,

where m is the mass of the particle. (This is a physical fact, with no mathe-
matical justification.) The operator H is essentially self-adjoint, and we will
identify it with its unique self-adjoint extension.

If ψ is the state at time 0 and ψt is the state at time t, then ψt = U(t)ψ =
e−itHψ. This implies the Schrödinger equation:

∂ψt
∂t

= −iHψt =
i

2m

∂2ψt
∂x2

.

(Again, recall that we are working in units where ~ = 1.) This equation
has an explicit solution, which we will not write down. It is easy to show
using the explicit form of the solution that for any ψ ∈ L2(R), ‖ψt‖L∞ → 0
as t → ∞. So the p.d.f. of the position flattens as t → ∞. In other words,
there is no limiting probability distribution for the position of the particle;
it spreads out across the whole real line.

4.5. Free evolution of the momentum

Now let us see what happens to the momentum of a free particle in 1D.
It is not hard to show, using the Schrödinger equation, that

ψ̂t(p) = e−itp
2/2mψ̂(p).

Thus, |ψ̂t(p)|2 = |ψ̂(p)|2. Hence the p.d.f. of the momentum is not changing
at all. This is what we expect, since the momentum of a free particle should
not be changing (although, of course, the randomness of the result of a given
observation is unexpected from a classical perspective).

4.6. A particle in a potential

Now let us briefly consider particles in the presence of a potential V .
The Hamiltonian is now given by

H = − 1

2m

d2

dx2
+ V,

where V as an operator is defined as (V ψ)(x) = V (x)ψ(x).
When is H is essentially self-adjoint? The answer to this question is not

at all obvious. There are many results in the literature, quite comprehen-
sively surveyed in Reed and Simon. For example, one useful result is the
following.

Theorem 4.2. The Hamiltonian H is essentially self-adjoint if V =
V1 + V2 for some V1 ∈ L2(R) and V2 ∈ L∞(R).
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This result does not work for growing potentials. For instance, it does
not cover the case of a simple harmonic oscillator, where V (x) grows quadrat-
ically in x. For such cases, the following result, due to Kato, is helpful.

Theorem 4.3. The Hamiltonian H is essentially self-adjoint if V is
locally L2 and V (x) ≥ −V ∗(|x|) for some V ∗ such that V ∗(r) = o(r2) as
r →∞.

(Note that in particular if V (x) is locally L2 and lower-bounded by a
constant, then it satisfies the condition.)

4.7. Simple harmonic oscillator

Theorem 4.3 says, for example, that H is essentially self-adjoint if

V (x) =
1

2
mω2x2.

This is the potential for a simple harmonic oscillator with frequency ω.
Moreover, the corresponding Hamiltonian

H = − 1

2m

d2

dx2
+

1

2
mω2x2

has a complete orthonormal sequence of eigenvectors. For simplicity take
m = ω = 1. Then the (orthonormal) eigenvectors are

en(x) = CnHn(x)e−x
2/2,

where Cn is the normalization constant, and

Hn(x) = (−1)nex
2 dn

dxn
(e−x

2
)

is the ‘nth physicist’s Hermite polynomial’.

4.8. Bound states

Note that ifH is a Hamiltonian and ψ is an eigenfunction with eigenvalue
λ, then the evolution of this eigenfunction under this Hamiltonian is given
by ψt = e−itHψ = e−itλψ. So the p.d.f. of the position does not change over
time.

Physicists call this a ‘bound state’. This means that if you are in the
state, you will not freely move out of it (e.g., the p.d.f. of the position
will not become more and more flat). If you have a potential which allows
particles to move out freely, then the Hamiltonian cannot have a complete
orthonormal sequence of eigenstates as in the previous example.
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4.9. Dirac notation

Vectors in a Hilbert space are denoted by |x〉 (these care called ‘ket
vectors’). Often, we will write vectors like |0〉 , |1〉 , |2〉 , etc. Physicists will
say, for example, that |λ〉 is an eigenvector with eigenvalue λ. Just like
mathematicians would write x1, x2, x3, . . . , physicists write |1〉 , |2〉 , |3〉 , . . ..

We also have ‘bra vectors’: 〈x| is the linear functional taking y 7→ (x, y).
With this notation, we have

• 〈x|y〉 is the action of x on y, equal to (x, y).
• 〈αx|y〉 = α∗ 〈x|y〉 and 〈x|αy〉 = α 〈x|y〉.
• (x,Ay) is written as 〈x|A|y〉. Note that A |y〉 = Ay.

One of the great uses of this notation is the following. Let |1〉 , |2〉 , |3〉 , . . .
be an orthonormal basis of H. Then

∑∞
i=1 |i〉 〈i| = 1, meaning that( ∞∑

i=1

|i〉 〈i|
)
|x〉 =

∞∑
i=1

|i〉 〈i|x〉 = |x〉 .

This is very useful; often one replaces 1 with such an expression in a deriva-
tion. Going even further, on L2(R), a physicist would write that

1

2π

∫ ∞
−∞

dp |p〉 〈p| = 1,

where |p〉 (x) = eipx, which is an improper element of L2. The derivation is
as follows:(

1

2π

∫ ∞
−∞

dp |p〉 〈p|
)
ψ(x) =

(
1

2π

∫ ∞
−∞

dp |p〉 〈p|ψ〉
)

(x)

=
1

2π

∫ ∞
−∞

dpψ̂(p)eipx = ψ(x).





LECTURE 5

Many particle states

Date: 10/3/2018
Scribe: Philip Ken-Ka Hwang

5.1. Position and momentum space wavefunctions

Consider a particle with state space H = L2(R). Until now, we have
represented a state |ψ〉 ∈ H as a function ψ ∈ L2(R). This is called the

position space representation of ψ. We can also identify |ψ〉 with ψ̂, the

Fourier transform of ψ. The function ψ̂ is called the momentum space
representation of |ψ〉, or simply the momentum wavefunction. Physicists

view ψ and ψ̂ as different representations of the same abstract object |ψ〉.
Example 5.1. Consider the improper momentum eigenstate |p0〉 for

p0 ∈ R. The position space representation is the function ψ(x) = eip0x. The

Fourier transform of this function is ψ̂(p) = 2πδ(p− p0). The function ψ̂ is

the momentum space representation of the state |p0〉. Often ψ̂ is also written
as ψ if it is clear from the context that we are working in momentum space.

We have seen that if ψ is the position space representative of a free
particle, then ψ evolves as ψt = e−itHψ, where

H = − 1

2m

d2

dx2
.

The momentum space representative ϕ = ψ̂ evolves as ϕt(p) = e−itp
2/2mϕ(p).

Furthermore the Hamiltonian on the momentum space is

Hϕ(p) =
p2

2m
ϕ(p).

If we distinguish the two Hamiltonian operators as Hx and Hp, then they
are related as

Ĥxψ = Hpψ̂.

Usually, such a distinction is not made.

5.2. Schrödinger and Heisenberg pictures

Let ψ be a normalized state. The state ψ evolves in times as ψt = e−itH .
If you have an observable with operator A, then its expected value at time
t is 〈ψt|A|ψt〉 = (ψt, Aψt). This is called the Schrödinger picture of time

19
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evolution of states. The Heisenberg picture is a different way of looking
at time evolution, where operators evolve instead of states. If A is the
operator for an observable, then in the Heisenberg picture, the operator for
the same observable at time t is At = eitHAe−itH . The expected value of
the observable at time t is just the expected value of At computed at time 0,
that is, 〈ψ|At|ψ〉. Note that this gives the same result as in the Schrödinger
picture, since

〈ψ|At|ψ〉 = 〈ψ|eitHAe−itH |ψ〉 = 〈ψt|A|ψt〉.
Thus, the two pictures are different ways of carrying out the same calcula-
tions. In quantum field theory, however, it often helps to think in terms of
the Heisenberg picture.

5.3. Tensor product state spaces

Let H be the Hilbert space for one particle. Then the Hilbert space for
n such particles is the n-fold tensor product H⊗n. The tensor product is
defined as follows.

If we have ψ1, ψ2, . . . , ψn ∈ H, we want to define a tensor product ψ1 ⊗
ψ2 ⊗ · · · ⊗ ψn which is multilinear, that is,

(1) ψ1 ⊗ · · · ⊗ (αψi)⊗ · · · ⊗ ψn = α(ψ1 ⊗ · · · ⊗ ψn), and
(2) ψ1 ⊗ · · · ⊗ (ψi + ψ′i) ⊗ · · · ⊗ ψn = ψ1 ⊗ · · · ⊗ ψi ⊗ · · · ⊗ ψn + ψ1 ⊗
· · · ⊗ ψ′i ⊗ · · · ⊗ ψn.

To define this product, let us start with an orthonormal basis e1, e2, . . . of
H. Consider all formal linear combinations like∑

i1,...,in≥1

αi1···inei1 ⊗ · · · ⊗ ein

such that
∑ |αi1···in |2 < ∞. On this set, we can define addition and scalar

multiplication in the natural way. We can also define an inner product:(∑
αi1···inei1 ⊗ · · · ⊗ ein ,

∑
βi1···inei1 ⊗ · · · ⊗ ein

)
:=
∑

α∗i1···inβi1···in .

One can check that this is a Hilbert space. Since this is a basis-dependent
construction, call this space H⊗ne . Suppose that f1, f2, . . . is another or-
thonormal basis. Say ei =

∑∞
j=1 aijfj . We can then produce a natural

isomorphism ψ : H⊗ne → H⊗nf as

ψ(ei1 ⊗ · · · ⊗ ein) =
∑

j1,...,jn

ai1j1ai2j2 · · · ainjnfj1 ⊗ · · · ⊗ fjn .

Such isomorphisms allow us to identify the various constructions for various
choices of bases, and define a single abstract object called H⊗n.
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What is ψ1 ⊗ · · · ⊗ ψn for ψ1, . . . , ψn ∈ H? Take any basis e1, e2, . . ..
Suppose that ψi =

∑∞
j=1 aijej . Define

ψ1 ⊗ · · · ⊗ ψn :=
∑

j1,...,jn

a1j1a2j2 . . . anjnej1 ⊗ · · · ⊗ ejn .

This is a basis-dependent map from Hn into H⊗ne . However, we can have a
basis-independent definition of ψ1⊗ · · · ⊗ψn by observing that the diagram

Hn H⊗ne

H⊗nf
commutes. This implies that (ψ1, . . . , ψn) 7→ ψ1 ⊗ · · · ⊗ ψn ∈ H⊗n is well-
defined.

Example 5.2. Suppose H = L2(R) and e1, e2, . . . is an orthonormal
basis. Then an element of H⊗ne is of the form

∑
αi1···inei1 ⊗ · · · ⊗ ein . We

can map this element into L2(Rn) as

ψ(x1, . . . , xn) =
∑

αi1···inei1(x1)ei2(x2) · · · ein(xn).

It is straightforward to check that this map is an isomorphism. If we use
a different orthonormal basis f1, f2, . . ., then the isomorphic image of this
element in H⊗nf also maps to the same function ψ ∈ L2(Rn). If ψ1, . . . , ψn ∈
L2(R) and ψ = ψ1 ⊗ · · · ⊗ ψn, then ψ, as an element of L2(Rn), is given by
ψ(x1, . . . , xn) = ψ1(x1) · · ·ψn(xn)

5.4. Time evolution on a tensor product space

Suppose that the state of a single particle evolves according to the uni-
tary group (U(t))t∈R. Then the time evolution on H⊗n of n non-interacting
particles, also denoted by U(t), is defined as

U(t)(ψ1 ⊗ · · · ⊗ ψn) := (U(t)ψ1)⊗ (U(t)ψ2)⊗ · · · ⊗ (U(t)ψn)

and extended by linearity. (It is easy to check that this is well-defined.)
Consequently, the Hamiltonian is given by

H(ψ1 ⊗ · · · ⊗ ψn) = − lim
t→0

1

it
(U(t)(ψ1 ⊗ · · · ⊗ ψn)− ψ1 ⊗ · · · ⊗ ψn)

= − lim
t→0

1

it
(U(t)ψ1 ⊗ U(t)ψ2 ⊗ · · · ⊗ U(t)ψn − ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn)

= − lim
t→0

1

it

n∑
j=1

U(t)ψ1 ⊗ · · · ⊗ U(t)ψj−1 ⊗ (U(t)ψj − ψj)⊗ ψj+1 ⊗ · · · ⊗ ψn

=

n∑
j=1

ψ1 ⊗ · · · ⊗ ψj−1 ⊗Hψj ⊗ ψj+1 ⊗ · · · ⊗ ψn.
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5.5. Example of time evolution on a product space

Take H = L2(R) and let U(t) be the free evolution group, generated by
the Hamiltonian

H = − 1

2m

d2

dx2
.

From the previous lecture we know that H⊗n = L2(Rn). Moreover if
ψ = ψ1 ⊗ · · · ⊗ ψn, then as a function, ψ(x1, . . . , xn) = ψ1(x1) · · ·ψn(xn).
Therefore,

Hψ =

n∑
i=1

ψ1(x1) · · ·ψi−1(xi−1)

(
− 1

2m
ψ
′′
i (xi)

)
ψi+1(xi+1) . . . ψn(xn)

= − 1

2m

n∑
i=1

∂2

∂x2
i

(ψ1(x1) . . . ψn(xn))

= − 1

2m
∆ψ.

So by linearity,

Hψ = − 1

2m
∆ψ

for each ψ ∈ D(∆), where D(∆) is the domain of the unique self-adjoint
extension of the Laplacian.



LECTURE 6

Bosonic Fock space

Date: 10/5/2018
Scribe: Anav Sood

6.1. Bosons

There are two kinds of elementary particles — bosons and fermions. We
will deal only with bosons for now. Let H be the single particle state space
for any given particle that is classified as a boson. The main postulate about
bosons is that the state of a system of n such particles is always a member
of a certain subspace of H⊗n, which we denote by H⊗nsym and define below.

Let e1, e2, . . . be an orthonormal basis of H. Define H⊗ne,sym to be all
elements of the form

∑
αi1···inei1 ⊗ · · · ⊗ ein such that

αi1···in = αiσ(1)···iσ(n)

for all i1, . . . , in and σ ∈ Sn, where Sn is the group of all permutations of
1, . . . , n. It turns out that this is a basis-independent definition, in the sense
that the natural isomorphism between H⊗ne and H⊗nf discussed earlier is

also an isomorphism between the corresponding H⊗ne,sym and H⊗nf,sym. Thus

we can simply refer to H⊗nsym. Moreover, this is a closed subspace and hence
a Hilbert space.

For example, take H = L2(R) so H⊗n = L2(Rn). Then it is not hard to
show that

H⊗nsym = {ψ ∈ L2(Rn) : ψ(x1 . . . , xn) = ψ(xσ(1), . . . , xσ(n)) for all σ ∈ Sn}.
Another important fact is that if U(t) is any evolution on H, then its exten-
sion to H⊗n maps H⊗nsym into itself.

Next, let us consider the problem of finding an orthonormal basis for
H⊗nsym, starting with an orthonormal basis e1, e2, . . . of H. Take m1, . . . ,mn

and consider the vector ∑
σ∈Sn

emσ(1) ⊗ · · · ⊗ emσ(n) .

This element does not have norm 1, so in attempt to construct an orthonor-
mal basis we will normalize it. First, for each i ≥ 1 let

ni = |{j : mj = i, 1 ≤ j ≤ n}|.
23
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Note that
∑∞

i=1 ni = n. For example, if n = 3, m1 = 1, m2 = 1 and m3 = 2,
then the element in question is

e1 ⊗ e1 ⊗ e2 + e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e2 ⊗ e1

+ e2 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e1,

and n1 = 2, n2 = 1, n3 = n4 = · · · = 0.
It is an easy combinatorial exercise to show that∥∥∥∥∑

σ∈Sn

emσ(1) ⊗ · · · ⊗ emσ(n)
∥∥∥∥2

= n!
∞∏
i=1

ni!.

Therefore the element

1√
n!
∏∞
i=1 ni!

∑
σ∈Sn

emσ(1) ⊗ · · · ⊗ emσ(n)

has norm one. Additionally it is completely determined by the numbers
n1, n2 . . . , so we can choose to meaningfully denote it by |n1, n2, . . . 〉, which
is the usual convention. Note that this notation is dependent on the basis
e1, e2, . . . of H. It is not hard to show that

〈n′1, n′2, . . . |n1, n2, . . .〉 = δn1n′1
δn2n′2

· · · ,
where δk,l is the Kronecker delta function:

δk,l =

{
1 if k = l,
0 if k 6= l.

In fact, more is true: The set of elements{
|n1, n2, . . .〉 : n1, n2, . . . ≥ 0,

∞∑
i=1

ni = n

}
form an orthonormal basis of H⊗nsym. Note that this basis for H⊗nsym depends
on the initial choice of basis e1, e2, . . . for H.

Lastly, we define H⊗0
sym := C with basis {1}, The basis element 1 is

denoted by |0, 0, 0, . . .〉 or simply just |0〉. This is called the vacuum state.
It is important to note that |0〉 6= 0.

6.2. Bosonic Fock Space

Consider a Hilbert space H. We define B to be the set of sequences
(ψ0, ψ1, . . . ) where ψn ∈ H⊗nsym for all n and

∑∞
n=0 ‖ψn‖2 < ∞. We will

formally notate this sequence as
∑∞

n=0 ψn. We can put an inner product on
B as

(ψ, φ) =
∞∑
i=0

(ψn, φn).

This makes B a Hilbert space. This is called the Bosonic Fock space of
H. We can interpret a state ψ ∈ B in the following way. The system
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has n particles with probability ‖ψn‖2/
∑∞

i=1 ‖ψi‖2, and given that it has n
particles, the state of the system is ψn.

Let e1, e2, . . . be an orthonormal basis of H. Then a straightforward
argument shows that the set{

|n1, n2, . . . 〉 : ni ≥ 0 for all i,
∞∑
i=1

ni <∞
}

is an orthonormal basis for B. Note this basis depends on the basis chosen
for H. Next let

B0 :=

∞⊕
n=0

H⊗nsym =

{ ∞∑
n=0

ψn ∈ B : ψn = 0 for all but finitely many n

}
.

This is a dense subspace of B. All our operators on B will be defined on this
dense subspace.

The process of constructing a Fock space, starting from a single particle
Hilbert space, is known as second quantization.





LECTURE 7

Creation and annihilation operators

Date: 10/8/2018
Scribe: Casey Chu

7.1. Operator-valued distributions

Fix a basis of H and for each k ≥ 1, let a†k : B0 → B be a linear operator
defined on basis elements as

a†k|n1, n2, . . .〉 =
√
nk + 1|n1, n2, . . . , nk−1, nk + 1, nk+1, . . .〉.

Note that a†k maps H⊗nsym into H⊗(n+1)
sym . Thus it ‘creates’ a particle, and is

therefore called a ‘creation operator’. Note, in particular, that

a†k|0〉 = a†k|0, 0, . . . 〉
= | 0, . . . , 0︸ ︷︷ ︸

k−1 0s

, 1, . . .〉.

Next, for all k, let ak : B0 → B be a linear operator defined on basis elements
as

ak|n1, n2, . . . 〉 =

{ √
nk|n1, n2, . . . , nk−1, nk − 1, nk+1, . . . 〉 if nk ≥ 1,

0 if nk = 0.

Again, note that ak maps H⊗nsym into H⊗(n−1)
sym for n ≥ 1. Thus it ‘destroys’

a particle, and is therefore called an ‘annihilation operator’. Note, in par-
ticular, that

ak| 0, . . . , 0︸ ︷︷ ︸
k−1 0s

, 1, . . .〉 = 1 · |0, 0, . . . 〉 = |0〉.

Now using these operators we will define operator-valued distributions on H,
namely an object which takes in a function as input and returns an operator
as output. Take any f ∈ H and let

∑∞
k=1 αkek be its expansion in the chosen

basis. Define

A(f) =

∞∑
k=1

α∗kak, A†(f) =

∞∑
k=1

αka
†
k.

Note that A and A† map from H into the set of linear operators from B0

into B. Although these are defined in a basis-dependent way, we will now
show that A and A† are actually basis-independent.

27
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7.2. Basis-independence of A

First, we will show that A is basis-independent. We will show this only
for H = L2(R), but the proof extends to general H using isometries between
Hilbert spaces.

Let us start with A. Fix an orthonormal basis e1, e2, . . . ∈ H. Consider a
basis element |n1, n2, . . .〉 of B, where

∑∞
i=1 ni = n and hence |n1, n2, . . .〉 ∈

H⊗nsym = L2(Rn)sym. Let ϕ denote this function, which is a symmetric func-
tion in n variables. More explicitly, choose a list of integers m1,m2, . . . ,mn

such that for each i, ni counts the number of i’s listed. Then

ϕ(x1, . . . , xn) =
1√

n!
∏
i ni!

∑
σ∈Sn

emσ(1)(x1) · · · emσ(n)(xn).

Let ψ = akϕ. We know that

ψ =
√
nk |n1, n2, . . . , nk − 1, ...〉 ∈ L2(Rn−1)sym,

so we may similarly obtain the following explicit expression for ψ. Let
m′1,m

′
2, . . . ,m

′
n−1 be integers obtained by removing one k from m1, . . . ,mn.

Then

ψ(x1, . . . , xn−1)

=

√
nk√

(n− 1)!(nk − 1)!
∏
i 6=k ni!

∑
σ∈Sn−1

em′
σ(1)

(x1) · · · em′
σ(n−1)

(xn−1).

Now note that∫ ∞
−∞

ek(y)∗
∑
σ∈Sn

emσ(1)(x1) · · · emσ(n−1)
(xn−1) emσ(n)(y) dy

=
∑
σ∈Sn

emσ(1)(x1) · · · emσ(n−1)
(xn−1)

∫ ∞
−∞

ek(y)∗emσ(n)(y) dy

=
∑
σ∈Sn

mσ(n)=k

emσ(1)(x1) · · · emσ(n−1)
(xn−1)

= nk
∑

σ∈Sn−1

emσ(1)(x1) · · · emσ(n−1)
(xn−1),

using the fact that ∫ ∞
−∞

ej(y)∗ek(y) dy = δjk

to go from the second line to the third. We recognize that the summation in
this final expression is the same as the summation in our explicit expression
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for ψ, so we may use this equation to write

ψ(x1, . . . , xn−1)

=
nk√

(n− 1)!
∏
i ni!

∑
σ∈Sn−1

em′
σ(1)

(x1) · · · em′
σ(n−1)

(xn−1)

=

√
n√

n!
∏
i ni!

∫ ∞
−∞

ek(y)∗
∑
σ∈Sn

emσ(1)(x1) · · · emσ(n−1)
(xn−1) emσ(n)(y) dy

=
√
n

∫ ∞
−∞

ek(y)∗ϕ(x1, . . . , xn−1, y) dy.

Because we showed this equality for a basis vector ϕ = |n1, n2, . . .〉, by
linearity we have that for all ϕ ∈ L2(Rn)sym,

(akϕ)(x1, . . . , xn−1) =
√
n

∫ ∞
−∞

ek(y)∗ϕ(x1, . . . , xn−1, y) dy.

Now, again using linearity, for any f =
∑∞

k=1 αkek ∈ H = L2(R), we have
that

(A(f)ϕ)(x1, . . . , xn−1) =
∑
k

α∗k(akϕ)(x1, . . . , xn−1)

=
√
n
∑
k

α∗k

∫ ∞
−∞

ek(y)∗ϕ(x1, . . . , xn−1, y) dy

=
√
n

∫ ∞
−∞

f(y)∗ϕ(x1, . . . , xn−1, y) dy.

This expression for A(f)ϕ is clearly basis-independent. Although this ex-
pression is only for ϕ ∈ L2(Rn)sym, by linearity we have that A(f)ϕ is also
basis-independent for general ϕ ∈ B.

7.3. Basis-independence of A†

We take a similar approach for A†(f). Again let ϕ = |n1, n2, . . .〉 ∈
H⊗nsym = L2(Rn)sym, so that

ϕ(x1, . . . , xn) =
1√

n!
∏
i ni!

∑
σ∈Sn

emσ(1)(x1) · · · emσ(n)(xn)

for some list of integers m1,m2, . . . ,mn for which ni counts the number of

i’s listed. Let ψ = a†kϕ ∈ L2(Rn+1)sym. We know that

ψ =
√
nk + 1 |n1, n2, . . . , nk + 1, . . .〉 ,

yielding

ψ(x1, . . . , xn+1)

=

√
nk + 1√

(n+ 1)!(nk + 1)!
∏
i 6=k ni!

∑
σ∈Sn+1

em′
σ(1)

(x1) · · · em′
σ(n+1)

(xn+1),
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where m′1,m
′
2, . . . ,m

′
n+1 is a list obtainted by adding a k to original list.

Then it is not hard to see that∑
σ∈Sn+1

em′
σ(1)

(x1) · · · em′
σ(n+1)

(xn+1)

=
n+1∑
j=1

ek(xj)

(∑
σ∈Sn

emσ(1)(x1) · · · emσ(j−1)
(xj−1)

· emσ(j)(xj+1) · · · emσ(n)(xn+1)

)
.

Using this expression, we have

ψ(x1, . . . , xn+1)

=
1√

(n+ 1)!
∏
i ni!

∑
σ∈Sn+1

em′
σ(1)

(x1) · · · em′
σ(n+1)

(xn+1)

=
1√

(n+ 1)!
∏
i ni!

n+1∑
j=1

ek(xj)

·
(∑
σ∈Sn

emσ(1)(x1) · · · emσ(j−1)
(xj−1)emσ(j)(xj+1) · · · emσ(n)(xn+1)

)

=
1√
n+ 1

n+1∑
j=1

ek(xj)ϕ(x1, . . . , x̂j , . . . , xn+1),

where ·̂ indicates an omitted term. So extending by linearity to all ϕ ∈
L2(Rn)sym, we have

(a†kϕ)(x1, . . . , xn+1) =
1√
n+ 1

n+1∑
j=1

ek(xj)ϕ(x1, . . . , x̂j , . . . , xn+1).

Finally, for f =
∑∞

k=1 αkek ∈ H = L2(R), we have that

(A†(f)ϕ)(x1, . . . , xn+1) =
∑
k

αk(a
†
kϕ)(x1, . . . , xn+1)

=
1√
n+ 1

∑
k

αk

n+1∑
j=1

ek(xj)ϕ(x1, . . . , x̂j , . . . , xn+1)

=
1√
n+ 1

n+1∑
j=1

f(xj)ϕ(x1, . . . , x̂j , . . . , xn+1).

This expression for A†(f)ϕ is basis-independent as well, making A† itself
basis-independent.
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7.4. Commutation relations

To summarize, we have the following two basis-independent expressions
for A(f) and A†(f):

(A(f)ϕ)(x1, . . . , xn−1) =
√
n

∫ ∞
−∞

f(y)∗ϕ(x1, . . . , xn−1, y) dy,

(A†(f)ϕ)(x1, . . . , xn+1) =
1√
n+ 1

n+1∑
j=1

f(xj)ϕ(x1, . . . , x̂j , . . . , xn+1)

where ϕ ∈ L2(Rn)sym. These expressions allow us to define a(x) and a†(x),

continuous analogues of ak and a†k. Heuristically, for each x ∈ R, we set

a(x) = A(δx), a†(x) = A†(δx),

meaning that

(a(x)ϕ)(x1, . . . , xn−1) =
√
nϕ(x1, . . . , xn−1, x),

(a†(x)ϕ)(x1, . . . , xn+1) =
1√
n+ 1

n+1∑
j=1

δ(x− xj)ϕ(x1, . . . , x̂j , . . . , xn+1).

Under these definitions, we see that we may symbolically re-express A(f)
and A†(f) as

A(f) =

∫
dx f(x)∗a(x), A†(f) =

∫
dx f(x) a†(x).

(Note that the definitions of a and a† do not make sense directly, since L2

functions cannot be evaluated pointwise, and the delta function is not in
L2. Therefore, to be precise, we must integrate these against test functions,
yielding A and A†, respectively.)

With our original ak and a†k, it is not hard to verify the commutation
relation

[ak, a
†
l ] = δk,l1.

To derive the continuous analogue, first let f =
∑
αkek and g =

∑
βkek,

and recall that

[A(f), A†(g)] =

[ ∞∑
k=1

α∗kak,

∞∑
l=1

βla
†
l

]
=
∑
k,l

α∗kβl[ak, a
†
l ]

=
∑
k,l

α∗kβlδk,l1

= (f, g)1.
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But using the symbolic expressions, we have

[A(f), A†(g)] =

∫
dx dy f(x)∗g(y) [a(x), a†(y)].

This gives us the commutation relation

[a(x), a†(y)] = δ(x− y)1. (7.1)

Similarly, we may derive that

[a(x), a(y)] = [a†(x), a†(y)] = 0

for all x, y ∈ R. Jointly, these are all the commutation relations satisfied by
the a and a† operators.

This is where physics classes start, with the ‘operators’ a(x) and a†(x)
defined at every point in space and satisfying the commutation relations.
Instead, we have defined this concept rigorously, using operator-valued dis-
tributions.

7.5. Creation and annihilation on a general state space

Let us now extend the definitions of a and a† to general H = L2(X, dλ),
where X is some measurable space and λ is a measure on X. First, the
notion of a delta function on such a space is a distribution that maps a
function f to its value at a specific point. That is,

δx(f) = f(x) ∀x ∈ X.
Our definitions of A and A† work for general H, and in particular for H =
L2(X, dλ). We symbolically represent A and A† as

A(f) =

∫
dλ(x)f(x)∗a(x)

A†(f) =

∫
dλ(x)f(x)a†(x).

This yields similar expressions for a and a†:

(a(x)ϕ)(x1, . . . , xn−1) =
√
nϕ(x1, . . . , xn−1, x)

(a†(x)ϕ)(x1, . . . , xn+1) =
1√
n+ 1

n+1∑
j=1

δxj (x)ϕ(x1, . . . , x̂j , . . . , xn+1).
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Time evolution on Fock space
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Scribe: Andy Tsao

8.1. Defining a†(x)a(x)

Ordinarily, it does not make sense to talk about the product of two dis-
tributions. However, creation and annihilation operators can be multiplied
in certain situations. We have already seen one example of that in the com-
mutation relations for a and a†. Let us now see one more example. Given
any smooth test function f , we will show that

∫
dxf(x)a†(x)a(x) is a well-

defined operator on B0. Indeed, take any ϕ ∈ L2(Rn), and let ψ = a(x)ϕ
and ξ = a†(x)ψ. Then,

ψ(x1, . . . , xn−1) =
√
nϕ(x1, . . . , xn−1, x),

and

ξ(x1, . . . , xn) =
1√
n

n∑
j=1

δ(x− xj)ψ(x1, . . . , x̂j , . . . , xn)

=
n∑
j=1

δ(x− xj)ϕ(x1, . . . , x̂j , . . . , xn, x).

Integrating over x gives us(∫
dxf(x)ξ

)
(x1, . . . , xn) =

n∑
j=1

∫
dxf(x)δ(x− xj)ϕ(x1, . . . , x̂j , . . . , xn, x)

=

n∑
j=1

f(xj)ϕ(x1, . . . , x̂j , . . . , xn, xj)

=

( n∑
j=1

f(xj)

)
ϕ(x1, . . . , xn),

where the last equality holds because ϕ is symmetric.

8.2. Free evolution on Fock space

We have shown previously that the free evolution Hamiltonian H acts
as Hϕ = − 1

2m∆ϕ for ϕ ∈ L2(Rn)sym. From this it follows by linearity that
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the free evolution Hamiltonian on B0 is

H

( ∞∑
n=0

ϕn

)
= − 1

2m

∞∑
n=0

∆ϕn.

Physicists will say that

H =

∫ ∞
−∞

dxa†(x)

(
− 1

2m

d2

dx2

)
a(x).

To see this, take ϕ ∈ L2(Rn)sym and let ψ = a(x)ϕ, ξ = d2

dx2
ψ, and η =

a†(x)ξ. Then,

ψ(x1, . . . , xn−1) =
√
nϕ(x1, . . . , xn−1, x),

ξ(x1, . . . , xn−1) =
√
n∂2

nϕ(x1, . . . , xn−1, x),

η(x1, . . . , xn) =
1√
n

n∑
j=1

δ(x− xj)ξ(x1, . . . , x̂j , . . . , xn).

Integrating over x yields(∫
dxη

)
(x1, . . . , xn) =

n∑
j=1

∫
dxδ(x− xj)∂2

nϕ(x1, . . . , x̂j , . . . , xn, x)

=

n∑
j=1

∂2
nϕ(x1, . . . , x̂j , . . . , xn, xj)

=

n∑
j=1

∂2
jϕ(x1, . . . , xn)

= ∆ϕ,

where the second-to-last equality follows from the symmetry of ϕ.

8.3. Introducing a potential

Consider n particles of mass m in a potential V . Then the Hamiltonian
is adjusted to

Hϕ = − 1

2m
∆ϕ+

n∑
i=1

V (xi)ϕ.

A similar argument to the above supports the representation

H =

∫ ∞
−∞

dxa†(x)

(
− 1

2m

d2

dx2
+ V (x)

)
a(x).

Suppose further that any two particles repel each other with potential W .
Then

Hϕ = − 1

2m
∆ϕ+

∑
i

V (xi)ϕ+
1

2

∑
i 6=j

W (xi − xj)ϕ
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and has the representation

H =

∫
dxa†(x)

(
− 1

2m

d2

dx2
+ V (x)

)
a(x)

+

∫ ∫
dxdyW (x− y)a†(x)a†(y)a(x)a(y).

Note that if W (x− y) ∼ δ(x− y), the last term becomes close to∫
dxa†(x)a†(x)a(x)a(x),

and the whole thing can be written as an integral in x. However, we cannot
set W (x− y) = δ(x− y) and still have the expression make sense in L2.

8.4. Physical interpretation

Physicists will say that a†(x) is an operator that creates a particle at x,
while a(x) is an operator that destroys a particle at x. To see this, suppose
we take the state ϕ = |0〉. Let ψ = a†(x)ϕ and ξ = a†(y)ψ. Then,

ψ(x1) =
1√

0 + 1
δ(x− x1)ϕ(x̂1) = δ(x− x1),

ξ(x1, x2) =
1√

1 + 1
(δ(y − x1)ψ(x2) + δ(y − x2)ψ(x1))

=
1√
2

(δ(y − x1)δ(x− x2) + δ(y − x2)δ(x− x1)).

We can see that ψ is the state with a particle located at x, and ξ is the
symmetrized state with two particles located at x and y. Note that x and y
need not be distinct.

8.5. Momentum space

Suppose that we now decide to represent all states as momentum wave-
functions. Then the conventional Hilbert space is H = L2(R, dp/2π). The
operators a and a† are almost the same as before, with

(a(p)ϕ)(p1, . . . , pn−1) =
√
nϕ(p1, . . . , pn−1, p),

(a†(p)ϕ)(p1, . . . , pn+1) =
1√
n+ 1

n+1∑
j=1

2πδ(p− pj)ϕ(p1, . . . , p̂j , . . . , pn+1).

Note that an additional factor of 2π appears in the expression of a† due to
the scaled measure dp/2π.

Recall the Hamiltonian operator H = − 1
2m∆ on position space. To

emphasize that this is the Hamiltonian on position space, let us denote this
by Hx. Let us now see what should be the analogous Hamiltonian operator
on momentum space. If Hp denotes this operator, its defining property is

that it must satisfy Hpϕ̂ = Ĥxϕ for all ϕ.
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The n-fold tensor product of H is L2(Rn, (2π)−ndp1 · · · dpn). For ϕ ∈
H⊗n, the Hamiltonian operator on momentum space acts as

Hpϕ =

(
1

2m

n∑
j=1

p2
j

)
ϕ.

Since Hp acts on ϕ by scalar multiplication, its representation using a and

a† is simply

Hp =

∫
dp

2m

p2

2m
a†(p)a(p).

One can check that Hp and Hx satisfy the relationship Hpϕ̂ = Ĥxϕ. In
general we will not differentiate between Hp and Hx and denote them both
by H (although they are operators on different spaces).

We will use the following notation throughout the rest of the lectures:

|p1, p2, . . . , pn〉 := a†(p1)a†(p2) · · · a†(pn) |0〉 .
Just like in position space, the above state is the state of n non-relativistic
bosons in one-dimensional space with momenta exactly equal to p1, . . . , pn.

Generally, we will be working in momentum space when we move to
developing QFT. Consider a state ψ =

∑∞
n=0 ψn ∈ B, where B is the bosonic

Fock space associated with the Hilbert space L2(R, dp/2π). Then note that

〈p1, p2, . . . , pn|ψ〉 = 〈p1, p2, . . . , pn|ψn〉 ,
since inner products of the form 〈p1, p2, . . . , pn|ψm〉 are zero when n 6= m
(states with different particle number are orthogonal by definition in the
Fock space). This shows that | 〈p1, p2, . . . , pn|ψ〉 |2 is proportional to the
joint probability density of the n momenta, conditional on the number of
particles = n, if the state of the system is ψ. Recall that the system has n
particles with probability proportional to ‖ψn‖2.



LECTURE 9

Special relativity

Date: 10/12/2018
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9.1. Special relativity notation

We have now finished our preliminary discussion of non-relativistic quan-
tum field theory. We will now move on to incorporate special relativity. As
always, we will be adopting units where ~ = c = 1. The following nota-
tions and conventions are standard in special relativity, and carry over to
quantum field theory.

In special relativity, our universe is represented by the vector space R1,3,
which is just R4 but with a different inner product. We will denote a vector
x ∈ R1,3 without an arrow or bolding. We will write components as:

x = (x0, x1, x2, x3)

where x0 is the time coordinate (note that we have used superscripts). Given
x ∈ R1,3, we let x = (x1, x2, x3) be the 3-tuple of spatial coordinates, which
is a vector in R3. Then x = (x0,x). The distinction between x and x is very
important.

We now define a symmetric matrix η as:

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (9.1)

We will write ηµν to denote the (µ, ν)th entry of η. Here, we use a subscript
while we used a superscript to label the coordinates.

This matrix serves as a quadratic form to define an inner product on
R1,3. Given x, y ∈ R1,3, the inner product is defined as:

(x, y) = x0y0 − x1y1 − x2y2 − x3y3 =
∑
µ,ν

ηµνx
µyν

This is the Minkowski inner product. But if we simply consider x ·y, we get
the usual:

x · y = x1y1 + x2y2 + x3y3.

37



38 9. SPECIAL RELATIVITY

This is the regular dot product. So the Minkowski inner product can be
written more succinctly as

(x, y) = x0y0 − x · y.
In special relativity, it is conventional to write x2 for x · x and

x2 = (x, x) = (x0)2 − x · x.
The Euclidean norm of a 3-vector x will be denoted by |x|. It is vital to
remember and be comfortable with all of the above notations for the rest of
this lecture series.

9.2. Lorentz Transformations

A Lorentz transformation L on R1,3 is a linear map such that (Lx,Ly) =
(x, y) for all x, y ∈ R1,3 (using the Minkowski inner product). In the lan-
guage of matrices, this means that:

LT η L = η.

This is very similar to the orthogonality condition under the usual inner
product. Like orthogonal matrices, Lorentz transformations form a Lie
group O(1, 3). In analogy with the regular orthogonal groups, we can con-
sider the map L 7→ det(L) where the determinant serves as a homomorphism:

det : O(1, 3)→ Z2 = {−1, 1}.
In the case of the orthogonal groups, quotienting out by the action of this
homomorphism is sufficient to reduce O(4) to SO(4). However, the group
O(1, 3) has another homomorphism L 7→ sign(L0

0), where L0
0 is the top left

entry of the matrix.
We define the restricted Lorentz group SO↑(1, 3) to be the set of all

L ∈ O(1, 3) such that det(L) = 1 and sign(L0
0) = 1. This is a subgroup of

O(1, 3).

9.3. What is special relativity?

Classical physics is invariant under isometries of R3, that is, translations
and rotations. What does that mean? Suppose you have a computer pro-
gram simulating physics. You input the state of the system at time 0, then
the program gives you the state at time t. Suppose a trickster enters the
state of the system at time 0 but in a different coordinate system. If your
program is properly built, the result it returns for the trickster will (after
changing back coordinates) be the exact same as the result you saw earlier.
This a property of classical physics.

Special relativity claims that the laws of physics remain invariant un-
der restricted Lorentz transformations and spacetime translations of R1,3,
in the same sense as above. Now space and time become mixed into a single
entity called spacetime, coordinates of which are changed by Lorentz trans-
formations and spacetime translations. The same analogy as before holds,
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except now the trickster can change the time coordinates under a Lorentz
transformation with no effect on the final results.

Our goal in constructing a quantum field theory will be to find one in-
variant under these restricted Lorentz transformations and spacetime trans-
lations. We will do this, but we will not explicitly show that it is invariant.
This is how the theories are designed, but this will not be proven to save
time.

9.4. Proper time

The parametrization of a curve in Euclidean space by arc length has
the property that it is invariant under Euclidean symmetries. That is, if we
apply a rotation or translation to the coordinate system, the parametriza-
tion remains unchanged. In a similar way, a curve in R1,3 can sometimes
be parametrized in a way that is invariant under any change of the coor-
dinate system by an action of SO↑(1, 3) or a spacetime translation. The
parametrization x(τ) of a curve by arc length requires that ‖dx/dτ‖ ≡
1, where ‖ · ‖ is Euclidean norm. In a similar vein, a Lorentz-invariant
parametrization requires (

dx

dτ
,
dx

dτ

)
≡ 1,

where (·, ·) is the Minkowski inner product. The conditions under which such
a parametrization exists are a little more demanding than the conditions
for parametrizability by arc length. A sufficient condition is that in some
coordinate system, the curve has a time parametrization x(t) = (t,x(t))
that satisfies ∣∣∣∣dxdt

∣∣∣∣ < 1 ∀t.

In other words, in some coordinate system, the curve represents the tra-
jectory of a particle whose speed is always strictly less than the speed of
light.

If x(τ) is a parametrization of the trajectory of a particle as above, τ
is called the ‘proper time’ of the trajectory. The proper time is (up to an
additive constant) independent of the coordinate system under restricted
Lorentz transformations and spacetime translations.

9.5. Four-momentum

Suppose that we are given the trajectory x of a particle, parametrized
by proper time. If the mass of the particle is m, its ‘four-momentum’ at any
point on the trajectory is the vector

p = m
dx

dτ
.

By the nature of the proper time, p does not depend on the coordinate
system. If you fix a coordinate system, then the four-momentum has the
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formula

p =

(
m√

1− v(t)2
,

mv(t)√
1− v(t)2

)
,

where v(t) = dx/dt is the coordinate-dependent velocity. We usually denote
four-momentum as:

p = (p0, p1, p2, p3) = (p0,p)

The four-momentum is also called the ‘energy-momentum’, as we can iden-
tify the first component of p0 as the relativistic energy E. The remaining
part, p, is called the relativistic momentum. When the particle is at rest,
p = 0, and we get E = m, the famous Einstein relation (with c = 1). Fur-
ther, note that in the non-relativistic limit |v(t)| � 1, we can expand the
energy p0 as:

p0 =
m√

1− v(t)2
≈ m+

1

2
mv(t)2,

which is the sum of the rest energy and the classical kinetic energy. One
thing we can observe from the definition of p is that:

p2 = (p0)2 − p · p = m2,

which in turn implies that

p0 = E =
√
m2 + p2 = ωp,

where the latter will become our conventional notation, with the subscript
denoting the dependence on the relativistic momentum. Notice that the
four-momentum p is always an element of the manifold

Xm = {p ∈ R1,3 : p2 = m2, p0 ≥ 0}.
This manifold is called the ‘mass shell’ of mass m. It is a very important
object in quantum field theory.
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10.1. Time evolution of a relativistic particle

Recall the mass shell Xm = {p ∈ R1,3 : p2 = m2, p0 ≥ 0} defined in the
last lecture. In quantum field theory, we model the behavior of the four-
momentum of a particle instead of the classical momentum. The Hilbert
space is H = L2(Xm, dλm), where λm is the unique measure (up to a multi-
plicative constant) that is invariant under the action of the restricted Lorentz
group on Xm. We will define λm later in this lecture.

Suppose that this invariant measure exists. How does the state of the
free particle evolve? The main postulate is the following:

Postulate. If the four-momentum state of a freely evolving particle at time
0 is ψ ∈ L2(Xm, dλm), then its state at time t is the function ψt, given by

ψt(p) = e−itp
0
ψ(p). (Recall that p0 is the first coordinate of p.)

The reader may be wondering how time evolution makes sense in the above
manner, when time itself is not a fixed notion in special relativity. Indeed,
the above concept of time evolution does not make sense in the relativistic
setting. The above postulate is simply the convenient way to think about
what is going on. What is really going on is a bit more complicated. We
will talk about it in the next lecture.

The above postulate is a direct generalization of free evolution in the

non-relativistic setting in R3, since in that case ψt = e−itp
2/2mψ, where p

is the non-relativistic momentum and p2/2m is the non-relativistic energy.
The postulate simply replaces the non-relativistic energy by the relativistic
energy p0. Notice that the Hamiltonian for time evolution in the relativistic
setting is therefore just Hψ(p) = p0ψ(p). Consequently,

∂

∂t
ψt(p) = −ip0ψt(p).

While this equation is actually correct, note that there is an obvious con-
ceptual difficulty because the equation gives a special status to time, which
is not acceptable in special relativity. We will resolve this difficulty in the
next lecture.
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10.2. The measure λm

We will now construct the invariant measure on our mass shell in analogy
with the unique invariant measure on a sphere with respect to rotations. One
way to construct the uniform measure on the sphere is to make a thin annulus
around the sphere, take the Lebesgue measure on the annulus, normalize it,
and take the width of the annulus to zero. The key to why this works is that
a thin annulus is also rotationally invariant, giving a rotationally invariant
measure in the limit.

One way to define Lorentz invariant annuli is to set

Xm,ε = {p : m2 < p2 < (m+ ε)2},
where the square is the Minkowski norm, hence making this annulus Lorentz
invariant. Scaling Lebesgue measure on this annulus in a suitable way gives
a nontrivial measure as ε → 0. To integrate functions with respect to this
measure, we bring our annuli down to R3. Any point p ∈ R3 corresponds

to a unique point p ∈ Xm where p = (ωp,p), with ωp =
√
m2 + p2. The

thickness of Xm,ε at p is√
(m+ ε)2 + p2 −

√
m2 + p2 ≈ εm

ωp
.

From this it is easy to derive that for an appropriate scaling of Lebesgue
measure on Xm,ε as ε→ 0, the scaling limit λm satisfies, for any integrable
function f on Xm,∫

Xm

dλm(p)f(p) =

∫
R3

d3p

(2π)3

1

2ωp
f(ωp,p). (10.1)

Note that constants do not matter because we are free to define our measure
up to a constant multiple. The factor 2 in the denominator is conventional.
The above integration formula gives a convenient way to integrate on the
mass shell.
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11.1. Changing the postulates

We now arrive at a fundamental problem with our picture, which is,
‘what does it mean to say momentum state at a given time?’ This is because
Lorentz transforms change the concept of time slices. That is, the notion of
two events happening ‘at the same time’ need not remain the same under a
change of coordinate system. As we have defined it, ψ evolving as ψt(p) =

e−itp
0
ψ(p) is just a convenient way to think of time evolution, but the true

picture is more complicated.
To go from quantum mechanics to QFT, we need to fundamentally

change the postulates to get a picture that is fully consistent with special
relativity. Recall that we had five postulates of quantum mechanics that
were introduced in the second lecture. The postulates need to be modified
as follows.

P1 For any quantum system, there exists a Hilbert space H such that
the state of the system is described by vectors in H. This looks the
same as the original P1, but there is one crucial difference. In the
new version, a state is not for a given time, but for all spacetime.
In other words, a state gives a complete spacetime description of
the system.

P2 This postulate is unchanged.
P3 This postulate is unchanged.
P4 This postulate is unchanged.
P5 This postulate is completely different. There is no concept of time

evolution of a state in QFT. We need some extra preparation before
stating this postulate, which we do below.

The Poincaré group P is the semi-direct product R1,3 o SO↑(1, 3), where
R1,3 is the group of spacetime translations (for x ∈ R1,3, x(y) = x+y). This
means

P = {(a,A) : a ∈ R1,3, A ∈ SO↑(1, 3)} (11.1)

with the group operation defined as (a,A)(b, B) = (a+Ab,AB). This is the
group of isometries of the Minkowski spacetime. The action of (a,A) ∈ P
on x ∈ R1,3 is defined as (a,A)(x) = a+Ax.
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A representation U of the Poincaré group in a Hilbert space H is a map
U from P into the space of unitary operators on H such that

U((a,A)(b, B)) = U(a,A)U(b, B)

for all (a,A) and (b, B). The representation is called strongly continuous
if for any x ∈ H, the map (a,A) → U(a,A)x is continuous. The revised
Postulate 5 replaces the notion of a time evolution group of unitary operators
with a strongly continuous unitary representation of the Poincaré group:

P5 Any quantum system with Hilbert space H comes equipped with
a strongly continuous unitary representation U of P in H, which
is related to the system in the following way: If an observer in a
given coordinate system observes the system to be in state ψ, then
an observer in a new coordinate system obtained by the action of
(a,A) on R1,3 observes the state of the same system as U(a,A)ψ.

Actually, the correct version says ‘projective unitary representation’; we
will come to that later. The representation property provides consistency,
meaning that if we change the reference frame two times in succession, the
resulting state is the same as if we changed the frame once, obeying the
composition law.

11.2. Implication for spacetime evolution

Let us now discuss what the new Postulate 5 means in terms of the time
evolution of a system. Consider the transformation (a, 1) acting on a point
x = (x0, x1, x2, x3), where a = a(t) = (−t, 0, 0, 0) for some t. The result
of this action gives us the point (x0 − t, x1, x2, x3). This reduces the time
coordinate by t, so the new reference frame obtained by the action of (a, 1) is
that of an observer who is t units ahead in time. This is an important point
to understand. The new state U(a, 1)ψ is what the system will look like t
units of time later, if it looks like ψ now. In this sense, it is inaccurate to
say that the state of a system is just an element of the Hilbert space. There
is a full equivalence class that we obtain by the transformations, which is
the abstract state of the system.

In some sense, we recover time evolution, but in actuality this is a dif-
ferent notion. Note that the family of unitary operators (U(a(t), 1))t∈R is a
strongly continuous unitary group acting on H, so there exists a self-adjoint
operator H such that U(a(t), 1) = e−itH . If we fix a reference frame, then
the system behaves just as if we were in the original quantum mechanical
setting, with H being the Hamiltonian governing time evolution of states.

11.3. The representation for massive scalar bosons

Now we write down the representation for the particles that we have
been considering until now (which are called massive scalar bosons). In our
setting, H = L2(Xm, dλm) (later on we will take the Fock space), and the
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associated representation is

(U(a,A)ψ)(p) = ei(a,p)ψ(A−1p).

Taking A = 1 and a = (−t, 0, 0, 0), we recover the time evolution group
defined in the previous lecture, namely, that the state evolves as ψt(p) =

e−itp
0
ψ(p) in a fixed coordinate system.
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12.1. Creation and annihilation on the mass shell

Let H = L2(Xm, dλm), and let B be the bosonic Fock space for this H.
Recall the operator-valued distributions A, A† on the Fock space B, and the
formal representations

A(f) =

∫
dλmf

∗(p)a(p),

A†(f) =

∫
dλmf(p)a†(p).

These are the usual, basis-independent definitions we have been working
with. Recall that

(a(p)φ)(p1, . . . , pn) =
√
nφ(p1, . . . , pn−1, p),

(a†(p)φ)(p1, . . . , pn+1) =
1√
n+ 1

n+1∑
j=1

δpj (p)φ(p1, . . . , p̂j , . . . , pn+1),

where δpj is the Dirac delta on Xm at the point pj . Note that we do not
write δ(p − pj) because Xm is not a vector space, and so p − pj may not
belong to Xm. We define two related operator-valued distributions on B:

a(p) =
1√
2ωp

a(p), a†(p) =
1√
2ωp

a†(p).

Note that because we are on Xm, the last three coordinates p define the
first, so that p = (ωp,p).

The following are the commutation relations for the operators defined
above, easily derived using the commutation relations for a(p) and a†(p)
that we already know from previous discussions:

[a(p), a(p′)] = 0,

[a†(p), a†(p′)] = 0,

[a(p), a†(p′)] = (2π)3δ(3)(p− p′)1.
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For example, to prove the last identity, notice that by (7.1) and (10.1),∫∫
d3p

(2π)3

d3p′

(2π)3
f(p)∗g(p′)[a(p), a†(p′)]

=

∫∫
d3p

(2π)3

d3p′

(2π)3

1√
4ωpωp′

f(p)∗g(p′)[a(p), a†(p′)]

=

∫∫
dλm(p)dλm(p′)

√
4ωpωp′f(p)∗g(p′)[a(p), a†(p′)]

=

(∫
dλm(p)2ωpf(p)∗g(p)

)
1

=

(∫
d3p

(2π)3
f(p)∗g(p)

)
1,

where 1 denotes the identity operator on L2(Xm, dλm).

12.2. The massive scalar free field

The massive scalar free field ϕ is an operator-valued distribution acting
on S (R1,3), the space of Schwartz functions on R1,3. The action of ϕ on a
Schwartz function f is defined as

ϕ(f) = A(f̂∗
∣∣
Xm

) +A†(f̂
∣∣
Xm

)

where the hat notation denotes the Fourier transform of f . On Minkowski
space, the Fourier transform is defined as

f̂(p) =

∫
d4x ei(x,p)f(x).

Note that there is no minus sign in the exponent because we have the
Minkowski inner product, so the minus sign is contained in the space coor-
dinates.

The free field ϕ is the first real quantum field that we are seeing in
this course. Quantum fields are operator-valued distributions. A field is
an abstract ‘thing’ that doesn’t exist as an object, but has real, observable
effects. For example consider the classical magnetic field. For this field,
we assign to each point in space a vector that denotes the direction and
strength of the field at that point. Similarly we can also consider fields that
put a scalar at each point. These are called classical scalar fields. Quantum
mechanics replaces observables with operators, so this is how we arrive at
an operator at each point in our spacetime. These fields act on particles by
Hamiltonians defined using the fields.

12.3. Multiparticle states

We previously defined the state for a system with n particles with four-
momenta exactly equal to p1, . . . , pn as

|p1, . . . , pn〉 = a†(p1) · · · a†(pn)|0〉.
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We now define

|p1, . . . ,pn〉 = a†(p1) · · · a†(pn)|0〉,
where p = (p0,p). This is the same state as |p1, . . . , pn〉, up to a constant
multiple. Conversely, if p ∈ R3, we will adopt the convention that p =
(ωp,p) ∈ Xm.

Consider a normalized state ψ =
∑∞

n=0 ψn ∈ B. We noted that condi-
tional on the event that the number of particles = n (which happens with
probability ‖ψn‖2), the joint probability density of the n four-momenta, with
respect to the invariant measure on Xn

m, is proportional to |〈p1, . . . , pn|ψ〉|2.
Suppose we want to find the joint density of the relativistic momenta (not
the four-momenta) with respect to the Lebesgue measure on R3. (Recall
that the relativistic momentum of a particle, often just called the momen-
tum, is simply the 3-vector formed by the last three coordinates of the
four-momentum.) We claim that this probability density is proportional to
|〈p1, . . . ,pn|ψ〉|2.

To see why, consider a one-particle system. Take some region A ⊆ R3

and suppose that the system is in a normalized state |ψ〉. Let B be the
image of A in Xm under the map p 7→ p = (ωp,p). Then

Prob(momentum ∈ A) = Prob(four-momentum ∈ B)

=

∫
B
dλm(p)|〈p|ψ〉|2

=

∫
A

d3p

(2π)3

|〈p|ψ〉|2
2ωp

=

∫
A

d3p

(2π)3
|〈p|ψ〉|2

where in line 3 to 4, we used the fact that

|p〉 = a†(p)|0〉 =
1√
2ωp

a†(p)|0〉 =
1√
2ωp
|p〉.

12.4. Hamiltonian on Fock space

Let the Hamiltonian for free evolution on H = L2(Xm, dλm) be denoted
by H. We know that Hψ(p) = p0ψ(p). We will denote this H by H0

henceforth, since we will work with more general Hamiltonians which will
be denoted by H. Then the action of H0 on H⊗nsym is given by

H0ψ(p1, · · · , pn) =

( n∑
j=1

p0
j

)
ψ(p1, · · · , pn).

This extends to the dense subspace B0 of B by linearity.
Recall that on L2(R), we showed that the Hamiltonian H can be ex-

pressed formally as
∫∞
−∞ dp (p2/2m)a†(p)a(p). A similar computation shows
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that the above H0 can be formally expressed as

H0 =

∫
Xm

dλm(p) p0a†(p)a(p)

=

∫
R3

d3p

(2π)3

1

2ωp
ωp

√
2ωp a

†(p)
√

2ωp a(p)

=

∫
R3

d3p

(2π)3
ωpa

†(p)a(p).

12.5. Pointwise representation of the free field

Let ϕ be the scalar free field of mass m. Recall that for f ∈ S (R1,3),

the Fourier transform is defined as f̂(p) =
∫
d4x ei(x,p)f(x). Thus,

ϕ(f) = A
(
f̂∗|Xm

)
+A†

(
f̂ |Xm

)
=

∫
dλm(p)

(
f̂∗(p)∗a(p) + f̂(p)a†(p)

)
=

∫
R3

d3p

(2π)3

1

2ωp

(
f̂∗(p)∗a(p) + f̂(p)a†(p)

)
=

∫
R3

d3p

(2π)3

1√
2ωp

(
f̂∗(p)∗a(p) + f̂(p)a†(p)

)
.

After plugging in the integrals for f̂(p) and f̂∗(p), and exchanging integrals,
we get

ϕ(f) =

∫
R1,3

d4xf(x)

[∫
R3

d3p

(2π)3

1√
2ωp

(
e−i(x,p)a(p) + ei(x,p)a†(p)

)]
.

The quantity inside [· · · ] is called ϕ(x). This is the pointwise representation
of ϕ. We will use it extensively.

12.6. Normal ordering

Whenever we have a monomial of a’s and a†’s, the normal ordered (or
Wick ordered) version is the same monomial but with all a†’s brought to the
left. The normal ordered monomial is denoted by putting colons in front
and at the end. For example,

:a(p)a†(p): = a†(p)a(p)

and

:a(p1)a†(p2)a†(p3)a(p4): = a†(p2)a†(p3)a(p1)a(p4).

Normal ordering will play an important role in the construction of interac-
tion Hamiltonians later.
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12.7. Expressing the Hamiltonian using the free field

Write x = (t,x), where x = (x1, x2, x3). Returning to our expression for
ϕ(x) derived previously, where

ϕ(x) =

∫
R3

d3p

(2π)3

1√
2ωp

(
e−i(x,p)a(p) + ei(x,p)a†(p)

)
,

we can formally differentiate ϕ(x) with respect to t, x1, x2, and x3, denoted
by ∂tϕ, ∂1ϕ, ∂2ϕ, and ∂3ϕ. It can be shown by a simple but slightly tedious
calculation that for any t,

H0 =
1

2

∫
R3

d3x :

(
(∂tϕ(x))2 +

3∑
ν=1

(∂νϕ(x))2 +m2ϕ(x)2

)
:.





LECTURE 13

Introduction to ϕ4 theory

Date: 10/22/2018
Scribe: Youngtak Sohn

13.1. Evolution of the massive scalar free field

In the last lecture, we have defined the free field ϕ(x) for x ∈ R1,3. Then
ϕ(x) is like an operator on B for any x. (More precisely it is an operator
when one averages over a test function.) The following proposition describes
how the massive free field evolves.

Proposition 13.1. For any x ∈ R3 and any t ∈ R,

ϕ(t,x) = eitH0ϕ(0,x)e−itH0 ,

where H0 is the free evolution Hamiltonian.

Recall the Heisenberg picture where a Hamiltonian H makes an operator
B evolve as Bt = eitHBe−itH . The above proposition says that for any x,
ϕ(t,x) evolves according to H0. To prove the proposition, we start with the
following lemma.

Lemma 13.1. If U is a unitary operator on H, extended to B, then for
all f ∈ H,

UA(f)U−1 = A(Uf)

UA†(f)U−1 = A†(Uf).

Proof. For H = L2(R), write down (UA(f)U−1)(g) explicitly using
the formula for A(f) when g = g1 ⊗ · · · ⊗ gn, and check that it is the same
as A(Uf)(g). Similarly, check for A†. Extend to general H by isometries or
a direct rewriting of the proof. �

Proof of Proposition 13.1. The proof given below is formal, but can
be made completely rigorous. Notice that

a(p) =
1√
2ωp

a(p) =
1√
2ωp

A(δp).
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This implies

eitH0a(p)e−itH0 =
1√
2ωp

eitH0A(δp)e
−itH0

=
1√
2ωp

A(eitH0δp)

=
1√
2ωp

A(eitp
0
δp) =

e−itp
0√

2ωp
A(δp) = e−itp

0
a(p).

(13.1)

Similarly,

eitH0a†(p)e−itH0 = eitp
0
a†(p). (13.2)

Then recall that

ϕ(t,x) =

∫
d3p

(2π)3

1√
2ωp

(
e−i(x,p)a(p) + ei(x,p)a†(p)

)
,

where (x, p) = tp0 − x · p. Together with (13.1) and (13.2), this completes
the proof. �

13.2. ϕ4 theory

Recall that

H0 =
1

2

∫
d3x :

(
(∂tϕ(x))2 +

3∑
ν=1

(∂νϕ(x))2 +m2ϕ(x)2

)
:,

for any given t, and in particular, t = 0. Let H be the Hamiltonian H0+gHI ,
where g is the coupling parameter, which is typically small, and HI is the
interaction Hamiltonian, given by

HI =
1

4!

∫
d3x :ϕ(0,x)4:.

So H is given by

H = H0 + gHI

=

∫
d3x :

(
1

2
(∂tϕ(0,x))2 +

1

2

3∑
ν=1

(∂νϕ(0,x))2

+
m2

2
ϕ(0,x)2 +

g

4!
ϕ(0,x)4

)
: .

The motivation to consider the particular perturbation Hamiltonian is the
following. Recall that in the one-dimensional non-relativistic setting, the
Hamiltonian to describe n particles with mass m in a potential V and re-
pelling each other with potential W is given by the following.

Hψ = − 1

2m

d2

dx2
ψ +

∑
i

V (xi)ψ +
1

2

∑
i 6=j

W (xi − xj)ψ.
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It also has the formal representation given by

H =

∫
dx a†(x)

(
− 1

2m

d2

dx2
+ V (x)

)
a(x)

+

∫ ∫
dxdyW (x− y)a†(x)a†(y)a(x)a(y).

When W (x− y) approaches δ(x− y), the last term becomes close to∫
dx a†(x)a†(x)a(x)a(x),

and the integrand is given by the normal ordering of four operator-valued
distributions.

Up to this point in this class, everything was rigorous. However, in ϕ4

theory, there is a problem of finding a suitable Hilbert space to make it a
rigorous theory, despite the fact that one can carry out the calculation to
make predictions. Say ψ ∈ H⊗nsym. Then we can write down HIψ formally,
but it does not need to be in B. Thus, it leads to the following open question.

Open problem 13.1. Make sense of the Hamiltonian for ϕ4 theory as
a true Hamiltonian on a Hilbert space.

We want to know how states evolve according to H. To understand
this, we will first have to learn about scattering theory, beginning in the
next lecture.

Incidentally, ϕ4 theory does not correspond to any real phenomena. The
main purpose of analyzing ϕ4 theory is that it possesses many of the main
complexities of the more realistic models, and gives us an opportunity to
develop various computational tools, such as Wick’s theorem, Feynman di-
agrams, and renormalization.

In the next two lectures, we will move away from quantum field theory
and return to non-relativistic quantum mechanics, to discuss the phenome-
non of scattering. We will return to QFT after developing some necessary
tools for understanding scattering in QFT.





LECTURE 14

Scattering

14.1. Classical scattering

Let V be a potential which is strong near 0 ∈ R3, but very weak as you
go away from 0. Let us first try to make sense of the following question
in the setting of classical Newtonian mechanics: Suppose a particle moves
towards the origin with velocity v under the influence of the potential V .
What is the outgoing velocity?

The trajectory of a free particle is always of the form (x + tv)t∈R, where
x,v ∈ R3 and x denotes the position at time 0. Denote such a trajectory
by (x,v). Given some trajectory (x,v), and some t < 0, consider a particle
that is on this trajectory at time t. Let x′ be its location at time 0 if it is
moving under the influence of the potential V from time t onwards, and let
v′ be its velocity at time 0. Let (x,v)t := (x′,v′) and define

Ω+(x,v) = lim
t→−∞

(x,v)t,

assuming that the limit exists. Then Ω+(x,v) can be interpreted as the
(location, velocity) at time 0 of a particle coming in ‘along the trajectory
(x,v)’ from the far past and moving under the influence of V .

Next, take t > 0 and look at a particle on the trajectory (x,v) at time
t. Find (x′,v′) such that if a particle were at (x′,v′) at time 0, and the
potential is turned on, it would be at x + tv at time t. Here we assume that
such a pair (x′,v′) exists. Let (x,v)t := (x′,v′) and define

Ω−(x,v) = lim
t→∞

(x,v)t,

again assuming that the limit exists. Then Ω−(x,v) is the (location,velocity)
of a particle at time 0, which when moving in the potential, assumes the
trajectory (x,v) in the far future.

Finally, the scattering operator is defined as

S := Ω−1
− Ω+,

if it makes sense. To understand what it means, let (y,u) = S(x,v). Then

Ω−(y,u) = Ω+(x,v).

The right hand side gives the (location, velocity) at time 0 if (x,v) is the
trajectory in the far past. The left hand side gives the (location, velocity)
at time 0 if (y,u) is the trajectory in the far future. This implies (y,u) is
the trajectory in the far future if (x,v) is the trajectory in the far past.
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14.2. Scattering in non-relativistic QM

We now know what scattering means in the classical case, although it
is a bit complicated even in that context. Now, consider the setting of non-
relativistic quantum mechanics in the context of a single particle in three
dimensional space. Let

H = H0 + gHI

where H0 is the free Hamiltonian, HI some interaction Hamiltonian (e.g.
HI = V for some potential V ), and g is a coupling parameter. We want to
understand evolution under H using the scattering approach. Let U(t) =
e−itH and U0(t) = e−itH0 . If |ψ〉 is a state of the system at time 0, then its
free evolution is the collection of states

(U0(t) |ψ〉)t∈R,
which is the analog of a straight line in the classical case. Let us identify |ψ〉
with this trajectory and call it ‘the trajectory |ψ〉’. Now suppose that the
state of the particle is evolving according to U instead of U0. Also, suppose
that it is ‘in the trajectory |ψ〉’ at some time t < 0. That is, its state at
time t is U0(t) |ψ〉. Then its state at time 0 is

U(−t)U0(t) |ψ〉 .
Define

Ω+ |ψ〉 ≡ lim
t→−∞

U(−t)U0(t) |ψ〉
which is the ‘state of a particle at time 0 if it is on the trajectory |ψ〉 in the
far past’. Similarly, Ω− is the state at time 0 of a particle that is on the
trajectory |ψ〉 in the far future:

Ω− |ψ〉 ≡ lim
t→∞

U(−t)U0(t) |ψ〉 .

As in the classical case, define the scattering operator

S = Ω−1
− Ω+.

That is, S |ψ〉 is the ‘trajectory of a particle in the far future if it is on the
trajectory |ψ〉 in the far past’.

If |ϕ〉 = S |ψ〉, then Ω− |ϕ〉 = Ω+ |ψ〉. This means that ‘if the particle
looked like it was evolving as U0(t) |ψ〉 for t � 0, then it will evolve as
U0(t) |ϕ〉 for t� 0’. More compactly,

S = lim
t2→∞, t1→−∞

U0(−t2)U(t2 − t1)U0(t1)

But there are two main problem in this set-up:

• Limits may not exist in the definitions of Ω+ and Ω−.
• We need Range(Ω+) ⊆ Range(Ω−) to define S = Ω−1

− Ω+.

The condition Range(Ω+) = Range(Ω−) is called ‘asymptotic complete-
ness’. If this is not valid, a particle can get ‘trapped by the potential’, and
will not look like it is in a free state at late times. It is a complicated tech-
nical condition, and we will not bother to verify it because our main goal is
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to move on to quantum field theory and essentially nothing can be verified
rigorously in that setting.

Here is an example where the limits exist:

Theorem 14.1. Let H = L2(R3), with the one-particle free Hamiltonian
H0 = − 1

2m∆ and HI = V ∈ L2(R3). Then, H = H0 + V is essentially self-

adjoint, and Ω+ and Ω− exist as operators in L2(R3).

Proof sketch for Ω+. Note that U(−t)U0(t) is a unitary operator.
Thus,

∀ψ,ϕ, ‖U(−t)U0(t)ϕ− U(−t)U0(t)ψ‖L2 = ‖ϕ− ψ‖L2 ,

is independent of t. So, it suffices to prove that limt→−∞ U(−t)U0(t)ϕ exists
in L2 for a spanning set of ϕ’s. For example, it is enough to show this for

ϕ(x) = e−(x−a)2/2α, a ∈ R3, α > 0.

Explicitly solving the Schrödinger equation for such ϕ, it is not hard to show
that

‖U0(t)ϕ‖L∞ ≤
(

1 +
t2

m2α2

)− 3
4

.

Let

ψt =
d

dt
(U(−t)U0(t)ϕ) =

d

dt
(eitHe−itH0ϕ)

= eitHiHe−itH0ϕ− eitHiH0e
−itH0ϕ

= ieitH(H −H0)e−itH0ϕ = ieitHV e−itH0ϕ.

Hence,

‖ψt‖L2 = ‖ieitHV e−itH0ϕ‖L2 = ‖V e−itH0ϕ‖L2

≤ ‖V ‖L2‖e−itH0ϕ‖L∞ ≤
(

1 +
t2

m2α2

)− 3
4

‖V ‖L2 .

Now,

U(−t)U0(t)ϕ = ϕ−
∫ 0

t
ψsds.

So we have to show that

lim
t→−∞

∫ 0

t
ψsds

exists in L2. It suffices to show that
∫ 0
t ‖ψs‖L2ds <∞. This holds, because

‖ψs‖L2 ≤ ‖V ‖L2

(
1 +

s2

m2α2

)− 3
4

∼s→∞ O(|s|− 3
2 ).

�
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14.3. Dyson series expansion

The Dyson series expansion is a formal power series expansion for the
scattering operator. Let H0 and HI be self-adjoint operators on a Hilbert
space, and let

H = H0 + gHI .

Define the scattering operator

S = lim
t0→−∞, t→+∞

U0(−t)U(t− t0)U0(t0),

where U(t) = e−itH and U0(t) = e−itH0 . Fix t0 < 0 and let

G(t) = U0(−t)U(t− t0)U0(t0).

Then a simple calculation gives

d

dt
G(t) = −igHI(t)G(t)

where HI(t) = U0(−t)HIU0(t), HI(t) is the free evolution of HI in the
Heisenberg picture. Thus,

G(t) = G(t0) +

∫ t

t0

dsG′(s)

= G(t0)− ig
∫ t

t0

dsHI(s)G(s)

= 1− ig
∫ t

t0

dsHI(s)G(s).

Iterating, we get the formal power series:

G(t) = 1 +

∞∑
n=1

(−ig)n
∫ t

t0

∫ θ1

t0

· · ·
∫ θn−1

t0

HI(θ1)HI(θ2) · · ·HI(θn)dθn · · · dθ1

Now send t→∞, and then t0 → −∞, to get

S = 1 +

∞∑
n=1

(−ig)n
∫ ∞
−∞

∫ θ1

−∞
· · ·
∫ θn−1

−∞
HI(θ1)HI(θ2) · · ·HI(θn)dθn · · · dθ1

= 1 +
∞∑
n=1

(−ig)n

n!

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞
T HI(θ1)HI(θ2) · · ·HI(θn)dθn · · · dθ1,

where the time ordering operator T is defined as:

T HI(θ1)HI(θ2) · · ·HI(θn) = HI(θσ(1))HI(θσ(2)) · · ·HI(θσ(n)),

where σ is a permutation such that θσ(1) ≥ θσ(2) ≥ · · · ≥ θσ(n). This is
known as the Dyson series expansion of S. Note that rigorously, we can
hope to prove a valid asymptotic series expansion, but actual convergence
is unlikely.



LECTURE 15

The Born approximation

Date: 10/26/2018
Scribe: Julien Boussard

15.1. Derivation of the Born approximation

Suppose that we have a Hamiltonian H = H0 + gHI . Then we derived
the Dyson series expansion for the scattering operator

S = 1 +

∞∑
n=1

(−ig)n

n!

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

dt1 · · · dtnT HI(t1) · · ·HI(tn),

where HI(t) = eitH0HIe
−itH0 and

T HI(t1) · · ·HI(tn) = HI(tσ(1)) · · ·HI(tσ(n))

for σ ∈ Sn such that tσ(1) ≥ · · · ≥ tσ(n).

Now let H0 = − 1
2m∆ and HI = V ∈ L2(R3). For this problem, we will

now work out the first order approximation of S:

S = 1 + (−ig)

∫ ∞
−∞

dteitH0V e−itH0 +O(g2).

Let us try to compute 〈p2|S|p1〉 for some p2,p1 ∈ R3. It is equal to

〈p2|1|p1〉+ (−ig)

∫ ∞
−∞

dt〈p2|eitH0V e−itH0 |p1〉+O(g2).

Recall that
〈p2|1|p1〉 = 〈p2|p1〉 = (2π)3δ(3)(p2 − p1).

Next, recall that as a function on momentum space, the state |p1〉 is the
function

ψ(p) = (2π)3δ(3)(p− p1).

Since H0 on momentum space is just multiplication by p2/2m,

(e−itH0ψ)(p) = e−itp
2/2mψ(p)

= e−itp
2/2m(2π)3δ(3)(p− p1)

= e−itp
2
1/2m(2π)3δ(3)(p− p1) = e−itp

2
1/2mψ(p).

In short,

e−itH0 |p1〉 = e−itp
2
1/2m|p1〉.
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Carrying out a similar calculation for p2, we get

〈p2|eitH0V e−itH0 |p1〉 = eit(p
2
2−p2

1)/2m〈p2|V |p1〉.
Next, recall that in position space, |p〉 is represented by the function ϕ(x) =
eix·p. Therefore a position space calculation gives

〈p2|V |p1〉 =

∫
d3xe−ix·(p2−p1)V (x) = V̂ (p2 − p1).

Combining, we get

〈p2|S|p1〉

= (2π)3δ(3)(p2 − p1) + (−ig)

∫ ∞
−∞

dteit(p
2
2−p2

1)/2mV̂ (p2 − p1) +O(g2)

= (2π)3δ(3)(p2 − p1) + (−ig)(2π)V̂ (p2 − p1)δ((p2
2 − p2

1)/2m) +O(g2).

This is called the Born approximation. Note that the first delta function is
a delta function in R3 and the second one is a delta function in R.

15.2. What does it mean?

The meaning of the Born approximation is not transparent from the
representation in terms of delta functions. Let us now try to understand it
better. Suppose that the incoming state was a proper state |ψ〉 instead of
the improper state |p1〉. Then f(p2) = |〈p2|S|ψ〉|2 would be proportional
to the probability density of the momentum of the outgoing state. Let us
approximate the improper state |p1〉 by the proper state |ψε〉, represented
in momentum space by the Gaussian density

ψε(p) =
1

(2π)3/2ε3/2
e−(p−p1)2/2ε,

where ε is some small number. With this approximation, the 3D delta
function δ(3)(p2−p1) in the Born approximation gets replaced by something
like

C1

ε3/2
exp

(
−(p2 − p1)2

2ε

)
,

where C1 is a constant. In a similar way, the one-dimensional delta function
δ((p2

2 − p2
1)/2m) gets replaced by something like

C2√
ε

exp

(
−(p2

2 − p2
1)2

8m2ε

)
.

Then, we have f(p2) = |〈p2|S|ψε〉|2 = |A(p2) +B(p2) +O(g2)|2 with:

A(p2) =
C1(2π)3

ε3/2
exp

(
−(p2 − p1)2

2ε

)
and

B(p2) = C2(−ig)(2π)V̂ (p2 − p1)
1√
ε

exp

(
−(p2

2 − p2
1)2

8m2ε

)
.
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Let S be the sphere of center 0 and radius |p1| in R3. Let Bε denote the ball
of radius

√
ε around p1. Let Aε denote the annulus of width

√
ε around the

sphere S. Then, roughly speaking,

• A(p2) is of order ε−3/2 in Bε, and very small outside.

• B(p2) is of order ε−1/2 in Aε, and very small outside.

This shows that, again roughly speaking,

• f(p2) is of order ε−3 in Bε and very small outside.
• f(p2) is of order ε−1 in Aε and very small outside.

Moreover, the volume of Bε is of order ε3/2, and the volume of Aε is of order
ε1/2. Thus, the integral of f(p2) in Bε is of order ε−3 · ε3/2 = ε−3/2, and the

integral of f(p2) in Aε is of order ε−1 · ε1/2 = ε−1/2. Everywhere else, the

integral is negligible. Since ε−3/2 � ε−1/2, this shows that as ε → 0, the
probability density fully concentrates near p1. Thus, if a particle comes in
with momentum ≈ p1, it also goes out with momentum ≈ p1.

This looks uninteresting, but the interesting thing happens if we con-
dition on the event that the particle scatters. When the incoming state is
|ψε〉, the above calculations show that the conditional density of the outgo-
ing momentum given |p2−p1| > η for η small is approximately proportional

to |V̂ (p2 − p1)|2 +O(g) in Aε.
If we fix η and send ε→ 0, and then send η → 0, we get the probability

distribution of the outgoing momentum conditional on it being different than
the incoming momentum. This probability distribution is supported on S,

with probability density proportional to |V̂ (p2 − p1)|2 +O(g).
To summarize, the Born approximation says that if a particle comes in

with momentum exactly equal to p1, it also goes out with momentum exactly
equal to p1, but conditional on the probability zero event that the outgoing
momentum 6= p1, the outgoing momentum has a probability distribution
supported on the sphere of radius |p1| and center 0 in R3, with density

proportional to f(p2) = |V̂ (p2 − p1)|2 +O(g).
It may seem strange to condition on a probability zero event, but this is

routinely done in probability theory, for example conditioning on the end-
point of Brownian motion being zero to get the Brownian bridge. Moreover,
since it is impossible to generate quantum particles with momentum exactly
equal to a given value, the above statement is only an idealization. In prac-
tical terms, it means that if the momentum of an incoming particle is very
close to a given value with high probability, then the outgoing momentum
is also close to same value with high probability, but if by chance it scatters,
then the Born approximation gives a first order approximation for the prob-
ability amplitude of the outgoing momentum. This probability distribution
is supported on the set of momenta that have the same Euclidean norm as
the incoming momentum, in agreement with conservation of energy.





LECTURE 16

Hamiltonian densities

Date: 10/29/2018
Scribe: Jaydeep Singh

16.1. Scattering In QFT

Recall the setting for QFT, as applied to scalar bosons of mass m. Here
‘scalar’ implies the underlying Hilbert space of the single-particle system is

H = L2(Xm, dλm), Xm = {p ∈ R1,3 : p2 = m2, p0 ≥ 0}.
Here Xm is the mass shell, dλm is the Lorentz invariant measure, and p2 =
(p, p) = (p0)2− (p1)2− (p2)2− (p3)2 is the Minkowski norm of p. From H we
constructed the multi-particle Bosonic Fock space B, and defined the free
evolution HamiltonianH0. The action of the latter on the state ψ(p1, . . . , pn)
is given by

(H0ψ)(p1, . . . , pn) =

( n∑
j=1

(p0
j )

2

)
ψ(p1, . . . , pn).

We further defined creation and annihilation operators as operator-valued
distributions a†(p), a(p) on Xm, and variants a(p) and a†(p). The relation
between these distributions is given by

a†(p) =
1√
2ωp

a†(p), a(p) =
1√
2ωp

a(p),

where ωp =
√

p2 +m2. Finally, recall the massive scalar free field:

ϕ(x) =

∫
d3p

(2π)3

1√
2ωp

(
e−i(x,p)a(p) + ei(x,p)a†(p)

)
.

It will be useful to define

ϕ−(x) =

∫
d3p

(2π)3

1√
2ωp

ei(x,p)a†(p), ϕ+(x) =

∫
d3p

(2π)3

1√
2ωp

e−i(x,p)a(p),

where ϕ−(x) and ϕ+(x) are called creation and annihilation parts respec-
tively.

Suppose we have the Hamiltonian H = H0+gHI , with HI an interaction
Hamiltonian, g a coupling constant, and S the associated scattering oper-
ator. As in non-relativistic QM, we aim to understand the amplitudes of
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scattering processes for general Hamiltonians, which reduces to understand-
ing the scattering operator S. In QFT, however, we must allow for particle
number to change: For p1, . . . ,pk incoming momenta and q1, . . . ,qj outgo-
ing momenta, we wish to compute the amplitudes〈

q1, . . . ,qj |S|p1, . . . ,pk
〉
.

The Dyson series expansion remains valid in the QFT setting, since the for-
mal derivation is exactly the same. When HI is constructed using objects
known as Hamiltonian densities, and the Hamiltonian densities satisfy cer-
tain properties, the Dyson series expansion takes a particularly nice form.
We will work this out in this lecture.

16.2. Construction of interaction Hamiltonians

We will now see a general prescription for constructing interaction Hamil-
tonians. Due to the difficulties associated with particle creation and annihi-
lation, we will be vague about the underlying Hilbert space on which these
operators will act.

Definition 16.1. A Hamiltonian density is an operator-valued dis-
tribution, with kernel denoted both asH(x) andH(t,x) for x = (t,x) ∈ R1,3.
This distribution must satisfy the following:

(1) (Time evolution.) H(t,x) = eitH0H(0,x)e−itH0 .
(2) (Equal time commutation.) For any t ∈ R and any x,y ∈ R3,

[H(t,x),H(t,y)] = 0.

The associated interaction Hamiltonian HI is the operator-valued dis-
tribution

HI =

∫
R3

d3xH(0,x).

Remark 16.1. In a physical setting, one imposes the following additional
constraints:

(1) The distribution H(x) should be Lorentz invariant.
(2) H(x),H(y) should commute whenever x and y are spacelike sepa-

rated, i.e. (x− y)2 < 0.

We do not need to verify these conditions for our main purpose, which is to
get a certain form of the Dyson expansion.

We now turn to an example of a Hamiltonian constructed via a density,
namely the ϕ4 theory. Here, the Hamiltonian density is

H(x) =
1

4!
:ϕ(x)4:.

In the remainder of this section, we prove H(x) satisfies conditions (1) and
(2) of Definition 16.1.

Lemma 16.1. For all k ∈ N, :ϕ(x)k: is a formal polynomial in ϕ(x).
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Proof. The proof is by induction on k. The k = 1 case follows immedi-
ately, as Wick ordering has no impact on the expression for ϕ(x). So suppose
that the result is given for k ≤ n. First, writing ϕ(x) = ϕ−(x) + ϕ+(x), we
observe that after Wick ordering, the product (ϕ−(x) + ϕ+(x))n collapses
as though the ϕ± commute:

:ϕ(x)n: = :(ϕ−(x) + ϕ+(x))n: =
n∑
j=0

(
n

j

)
ϕ−(x)jϕ+(x)n−j .

Next, we turn to the commutator [ϕ−(x), ϕ+(x)]:

[ϕ+(x), ϕ−(x)] =

∫ ∫
d3p

(2π)3

d3q

(2π)3

1√
2ωp

1√
2ωq

ei(x,q−p)[a(p), a†(q)].

But we have seen earlier that the commutator in the integrand is just
(2π)3δ(3)(q − p)1, so integration over d3q fixes the value of q. Since q =
(ωq,q), we see q is only a function of q, and so integrating the delta function
in fact sets q = p. This procedure thus yields

[ϕ+(x), ϕ−(x)] =

(∫
d3p

(2π)3

1

2ωp

)
1.

Let us denote the term within the brackets by C. Note C is not a finite
quantity, but just a symbol in our formal calculations.

We now employ the commutation relation repeatedly to compute

ϕ−(x)jϕ+(x)n−jϕ−(x)

= ϕ−(x)jϕ+(x)n−j−1ϕ−(x)ϕ+(x) + Cϕ−(x)jϕ+(x)n−j−1

= ϕ−(x)jϕ+(x)n−j−2ϕ−(x)ϕ+(x)2 + 2Cϕ−(x)jϕ+(x)n−j−1

= · · ·
= ϕ−(x)j+1ϕ+(x)n−j + (n− j)Cϕ−(x)jϕ+(x)n−j−1.

Therefore,

:ϕ(x)n:ϕ(x) =

( n∑
j=0

(
n

j

)
ϕ−(x)jϕ+(x)n−j

)(
ϕ+(x) + ϕ−(x)

)
=

n∑
j=0

(
n

j

)
ϕ−(x)jϕ+(x)n−j+1 +

n∑
j=0

(
n

j

)
ϕ−(x)jϕ+(x)n−jϕ−(x)

=

n+1∑
j=0

(
n+ 1

j

)
ϕ−(x)jϕ+(x)n+1−j +

n−1∑
j=0

C(n− j)
(
n

j

)
ϕ−(x)jϕ+(x)n−j−1

=
n+1∑
j=0

(
n+ 1

j

)
ϕ−(x)jϕ+(x)n+1−j +

n−1∑
i=0

Cn

(
n− 1

j

)
ϕ−(x)jϕ+(x)n−1−j ,
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where we have employed the previous display and the identity(
n

j

)
+

(
n

j − 1

)
=

(
n+ 1

j

)
in the second-to-last equality, and the identity

(n− j)
(
n

j

)
= n

(
n− 1

j

)
in the final step. Thus, we get

:ϕ(x)n:ϕ(x) = :ϕn+1(x): + Cnϕn−1(x):,

which clearly completes the induction step. �

Proposition 16.1. The Hamiltonian density H(x) = :ϕ(x)k: satisfies
conditions (1) and (2) of Definition 16.1.

Proof. In addition to the lemma above, we will need the following
facts:

(1) For all x,y ∈ R3, [ϕ(0,x), ϕ(0,y)] = 0. This follows directly from
a computation analogous to the one given above.

(2) The time evolution of the free field satisfies

ϕ(t,x) = eitH0ϕ(0,x)e−itH0 ,

which was observed in an earlier lecture.

We may generalize the second fact to arbitrary polynomials of ϕ, using

eitH0ϕ(0,x)ke−itH0 = (eitH0ϕ(0,x)e−itH0)k = ϕ(t,x)k.

Thus, using that :ϕ(t,x)k: = f(ϕ(t,x)) for f a formal polynomial, we con-
clude

:ϕ(t,x)k: = f(ϕ(t,x)) = eitH0f(ϕ(0,x))e−itH0 = eitH0 :ϕ(0,x)k:e−itH0 ,

which proves the time evolution property. Similarly, using the first fact
above, and the observation that A,B commute implies Am, Bn commute,
we get

[ϕ(t,x)m, ϕ(t,y)n] = [eitH0ϕ(0,x)me−itH0 , eitH0ϕ(0,y)ne−itH0 ]

= eitH0 [ϕ(0,x)m, ϕ(0,y)n]e−itH0 = 0.

Thus, again writing :ϕ(t,x)k: = f(ϕ(t,x)) for some formal polynomial f ,
and exploiting the bilinearity of the commutator, we see that

[:ϕ(t,x)k:, :ϕ(t,y)k:]

is a sum of commutators of the form [ϕ(t,x)m, ϕ(t,y)n], all of which vanish
by the above argument. Thus the equal time commutation property holds
for H. �



16.3. DYSON SERIES FOR THE QFT SCATTERING OPERATOR 69

16.3. Dyson series for the QFT scattering operator

Finally, we derive a simplified formula for the Dyson series represen-
tation in QFT, assuming that the interaction Hamiltonian arises from a
Hamiltonian density subject to the conditions (1) and (2) of Definition 16.1.
We first observe the following:

(1) Applying the time evolution of the interaction Hamiltonian, we
have

HI(t) = eitH0HI(0)e−itH0

= eitH0

(∫
d3xH(0,x)

)
e−itH0

=

∫
d3xeitH0H(0,x)e−itH0

=

∫
d3xH(t,x).

The interaction Hamiltonian at time t is thus naturally determined
by the Hamiltonian density at time t.

(2) The equal time commutation property ensures that the time or-
dered product T H(x1) · · ·H(xn) is unambiguously defined for any
x1, . . . , xn ∈ R1,3.

So, inserting HI(t) =
∫
dx3H(t,x) into the formula for the nth term Sn in

the Dyson series expansion, we observe that each argument is integrated
over all of spacetime. We may thus replace all integrals with integrals over
R1,3, yielding

Sn =
(−ig)n

n!

∫
R1,3

· · ·
∫
R1,3

dx1 · · · dxnT H(x1) · · ·H(xn).

This representation of the Dyson series will be useful going forward.





LECTURE 17

Wick’s theorem

Date: 10/31/2018
Scribe: Sungyeon Yang

17.1. Calculating the Dyson series: First steps

In this lecture we begin the process of learning how to compute the terms
in the Dyson series expansion for ϕ4 theory. Recall that the Hilbert space
of interest is H = L2(Xm, dλm) and we have operator-valued distributions
A,A† acting on this space. Let C be the class of all operators on B0 of the
form A(ξ) +A†(η) for some ξ, η ∈ H.

Lemma 17.1. If B1 = A(ξ1) +A†(η1) and B2 = A(ξ2) +A†(η2), then we
have

〈0|B1B2|0〉 = (ξ1, η2).

Proof. It is easy to see from the definitions of A and A† that for any
ξ, A(ξ)|0〉 = 0 and 〈0|A†(ξ) = 0. Thus,

〈0|B1B2|0〉 = 〈0|(A(ξ1) +A†(η1))(A(ξ2) +A†(η2))|0〉
= 〈0|A(ξ1)A†(η2)|0〉.

The proof is now easily completed using the commutation relation

[A(ξ), A†(η)] = (ξ, η)1

that we derived earlier. �

Note that a(p), a†(p) and ϕ(x) are elements of C as

a(p) =
a(p)√

2ωp
=

1√
2ωp

A(δp), a†(p) =
1√
2ωp

A†(δp),

and

ϕ(x) = A(fx) +A†(fx),
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where fx = ei(x,p). Here, as usual, p = (ωp,p). For the last claim, note that

ϕ(x) =

∫
d3p

(2π)3

1√
2ωp

(e−i(x,p)a(p) + ei(x,p)a†(p))

=

∫
d3p

(2π)3

1

2ωp
(e−i(x,p)a(p) + ei(x,p)a†(p))

=

∫
dλm(p)(e−i(x,p)a(p) + ei(x,p)a†(p))

= A(fx) +A†(fx).

Consider the amplitude 〈0|a(p′)a†(p)|0〉. By the commutation relation for
a(p) and a†(p),

a(p′)a†(p) = a†(p)a(p′) + (2π)3δ(3)(p− p′)1.

On the other hand, a(p′) |0〉 = 0 and 〈0| a†(p) = 0. Combining, we get

〈0|a(p′)a†(p)|0〉 = (2π)3δ(3)(p− p′).

We also have

〈0|a†(p′)a(p)|0〉 = 0, 〈0|a(p′)a(p)|0〉 = 0, 〈0|a†(p′)a†(p)|0〉 = 0.

By Lemma 17.1 and the observations made following the proof of the lemma,
we have

〈0|a(p)ϕ(x)|0〉 =
1√
2ωp

(δp, fx) =
1√
2ωp

ei(x,p),

〈0|ϕ(x)a†(p)|0〉 =
1√
2ωp

(fx, δp) =
1√
2ωp

e−i(x,p).

We will need these computations later.

17.2. Wick’s theorem

Let us now introduce the main tool for computing the terms in Dyson’s
expansion in QFT. If k is an even number, and pairing l of k is a permutation
(l1, l

′
1, l2, l

′
2, . . . , lk/2, l

′
k/2) of (1, 2, . . . , k) such that lj < l′j for all j. The

following result is known as Wick’s theorem.

Theorem 17.1. If B1, . . . , Bk ∈ C, then we have

〈0|B1B2 · · ·Bk|0〉 =
∑

pairings l

(k/2∏
j=1

〈0|BljBl′j |0〉
)

for k even, and 〈0|B1B2 · · ·Bk|0〉 = 0 for k odd.
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Proof. We prove the theorem by induction on k. Let Bj = A(ξj) +

A†(ηj). Then,

〈0|B1 · · ·Bk−1Bk|0〉 = 〈0|B1 · · ·Bk−1(A(ξk) +A†(ηk))|0〉
= 〈0|B1 · · ·Bk−1A

†(ηk)|0〉,
since A(ξk) |0〉 = 0. Since [A†(ξ), A†(η)] = 0 for any ξ and η, Lemma 17.1
gives

[Bk−1, A
†(ηk)] = [A(ξk−1), A†(ηk)] = (ξk−1, ηk)1.

Thus,

〈0|B1 · · ·Bk−1A
†(ηk)|0〉 = 〈0|B1 · · ·Bk−2A

†(ηk)Bk−1|0〉
+ (ξk−1, ηk)〈0|B1 · · ·Bk−2|0〉.

We can iterate this step until A†(ηk) moves all the way to the left, which
gives zero since 〈0|A†(ηk) = 0. After the final step, we get

〈0|B1B2 · · ·Bk|0〉 =

k−1∑
j=1

(ξj , ηk)〈0|B1 · · · B̂j · · ·Bk−1|0〉

where the hatted term is omitted. The induction step is now easily com-
pleted by recalling that (ξj , ηk) = 〈0|BjBk|0〉. �

The number of terms in the sum in Wick’s theorem is a well-known
quantity. It is equal to

(k − 1)!! := (k − 1)(k − 3) · · · 5 · 3 · 1.
When applying Wick’s theorem, verifying that the total number of terms
considered is indeed (k−1)!! is one way of ensuring that we have not missed
out anything.

17.3. Contraction diagrams

Each 〈0|BjBk|0〉 in Wick’s theorem is called a contraction of Bj and
Bk. The sum in Wick’s theorem is convenient to handle using contraction
diagrams. Diagramatically, we represent each Bj by a vertex, with an edge
hanging out. Then we tie up each tail with one other, so that there is no
untied tail. Each such diagram contributes one term to the sum in Wick’s
theorem.

Consider, for example, the calculation of 〈0|B1B2B3B4|0〉. The vertices
with freely hanging edges, and the three diagrams obtained by tying up the
edges, are shown in Figure 17.1.

When some Bi occurs as a power Bk
i , then it is represented as a single

vertex with k distinct tails hanging out. Consider 〈0|B1B
2
2B3|0〉 for ex-

ample. There are three diagrams in this calculation, but one is repeated
twice. So the pictorial representation shows two diagrams. This is shown in
Figure 17.2.
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Figure 17.1. Diagrams for 〈0|B1B2B3B4|0〉. The vertices
with freely hanging edges are shown on the left.

Figure 17.2. Diagrams for 〈0|B1B
2
2B3|0〉. The vertices

with freely hanging edges are shown on the left. The first
diagram is repeated twice because the two edges hanging out
from B2 are distinct.

As a final example, consider 〈0|B1B2B
4
3B4B5|0〉. Since there are 8 op-

erators, there should be (8 − 1)!! = 105 diagrams. Fortunately, there are
many repeated ‘similar’ diagrams, which makes it easy to represent them
compactly. This is shown in Figure 17.3.

Figure 17.3. Diagrams for 〈0|B1B2B
4
3B4B5|0〉. For the

second case, there are 12 diagrams after fixing two ver-
tices, and 6 ways of choosing the two vertices. There are
24 + 72 + 9 = 105 = (8− 1)!! diagrams in total.



LECTURE 18

A first-order calculation in ϕ4 theory

Date: 11/2/2018
Scribe: Jing An

18.1. Contraction diagrams under normal ordering

Last time, we investigated the calculations and diagrams for

〈0|B1 · · ·Bk
i · · ·Bm|0〉. (18.1)

We want to understand what happens if Bk
i is replaced by :Bk

i :.

Proposition 18.1. If we replace Bk
i by :Bk

i : in (18.1), then the answer
is obtained by deleting all diagrams in the original expansion that have any
self-loops at Bi.

For instance, recall the example 〈0|B1B2B
4
3B4B5|0〉, whose diagrams

were displayed in Figure 17.3 in the previous lecture. If we replace B4
3 by

:B4
3 :, then only the first set of 4! diagrams will survive.

Proof of Proposition 18.1. Since Bi ∈ C, it can be written in the
form Bi = A(ξi) + A†(ηi) for some ξi, ηi ∈ H. Let us denote B+

i := A(ξi)

and B−i := A†(ηi) for notational simplicity. Then

Bk
i = (B+

i +B−i )k.

Expanding it, we get 〈0|B1 · · ·Bk
i · · ·Bm|0〉 = sum of 2k such quantities.

Similarly, because

:Bk
i : =

k∑
j=0

(
k

j

)
(B−i )j(B+

i )k−j ,

we will again get a set of 2k terms. Moreover, there is a natural correspon-
dence between these two sets of 2k terms. We take any such term X on one
side and the corresponding Y on the other side, and write down the diagrams
for X and Y . Note that each diagram gives a product of contractions. If a
contraction for X is of the form 〈0|BjB+

i |0〉 for some j < i or 〈0|B+
i Bj |0〉

for some j > i, then it is the same in both diagrams, and likewise for B−i .
Moreover,

• Any contraction like 〈0|B+
i B

+
i |0〉 or 〈0|B−i B−i |0〉 is the same in

both diagrams and actually it is equal to 0, because B+
i |0〉 = 0 and

〈0|B−i = 0.
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• Any contraction like 〈0|B−i B+
i |0〉 is the same in both diagrams and

is equal to 0 due to the same reason as above.
• Any contraction like 〈0|B+

i B
−
i |0〉 (which is nonzero) in a diagram

for X has to be replaced by 〈0|B−i B+
i |0〉 (which is 0) in the corre-

sponding diagram for Y .

This shows that the diagram for Y can be computed by taking the diagram
for X and replacing it by 0 if there exists any contraction like

〈0|B+
i B

+
i |0〉, 〈0|B−i B−i |0〉, 〈0|B−i B+

i |0〉, or 〈0|B+
i B
−
i |0〉

in the diagram. (The first three above are automatically 0 and the last one,
by Wick’s ordering, can be replaced by 〈0|B−i B+

i |0〉.) But note that such
terms arise from terms like 〈0|BiBi|0〉 in the original Wick expansion for
〈0|B1 · · ·Bk

i · · ·Bm|0〉.
This tells us that if we take the Wick expansion for 〈0|B1 · · ·Bk

i · · ·Bm|0〉
and remove any diagram that has a contraction of the form 〈0|BiBi|0〉, then
we will get the Wick expansion for 〈0|B1 · · · :Bk

i : · · ·Bm|0〉. �

18.2. A first-order calculation in ϕ4 theory

Consider ϕ4 theory. Suppose we have distinct p1,p2,p3,p4, and we
want to compute

〈p3,p4|S|p1,p2〉
to the first order in perturbation theory. Recall the Dyson series expansion

S = 1 +

∞∑
n=1

(−ig)n

n!

∫
· · ·
∫
d4x1 · · · d4xnT

(
1

4!
:ϕ(x1)4: · · · 1

4!
:ϕ(xn)4:

)
= 1− ig

4!

∫
d4x :ϕ(x)4: +O(g2).

Since pi’s are distinct, we have 〈p3,p4|p1,p2〉 = 0. Therefore,

〈p3,p4|S|p1,p2〉 = − ig
4!

∫
d4x〈p3,p4|:ϕ(x)4:|p1,p2〉+O(g2).

Note that

〈p3,p4|:ϕ(x)4:|p1,p2〉 = 〈0|a(p3)a(p4):ϕ(x)4:a†(p1)a†(p2)|0〉. (18.2)

The set of contraction diagrams for the above quantity consists of 4! dia-
grams like the one displayed in Figure 18.1.

Feynman diagrams are contraction diagrams but without labels and
with arrows denoting incoming and outgoing particles. The contraction
diagram of Figure 18.1 becomes the Feynman diagram of Figure 18.2. The
usual convention for Feynman diagrams is that particles are shown to be
coming in from the left and exiting on the right.
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Figure 18.1. The diagrams for (18.2) are 4! repetitions of
the above diagram.

Figure 18.2. An example of a Feynman diagram, corre-
sponding to the contraction diagram of Figure 18.1. Note
that incoming particles enter from the left and exit on the right.

Now recall that for any p ∈ R3, p denotes the vector (ωp,p) ∈ Xm. Any
contraction diagram of the type shown in Figure 18.1 contributes

〈0|a(p3)ϕ(x)|0〉〈0|a(p4)ϕ(x)|0〉〈0|ϕ(x)a†(p1)|0〉〈0|ϕ(x)a†(p2)|0〉

=
ei(x,p3+p4−p1−p2)√
16ωp1ωp2ωp3ωp4

.

Multiplying the above by 4! and integrating over x, we get

〈p3,p4|S|p1,p2〉 = −ig
∫
d4x

ei(x,p3+p4−p1−p2)√
16ωp1ωp2ωp3ωp4

+O(g2)

=
−ig(2π)4δ(4)(p3 + p4 − p1 − p2)√

16ωp1ωp2ωp3ωp4

+O(g2). (18.3)

What does (18.3) mean? Like in the Born approximation, we can conclude
that (up to first order) the probability distribution of (p3,p4), given that
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the scattering has resulted in two outgoing particles, is supported on the
manifold

{(p3,p4) : p3 + p4 = p1 + p2}
Note that this is a manifold in R6 described by 4 constraints. Therefore we
expect this to be a 2D manifold. You can define a notion of ‘Lebesgue mea-
sure’ on this manifold as the limit of a sequence of measures with densities
proportional to

exp

(
−‖p3 + p4 − p1 − p2‖2

ε

)
as ε → 0, where the multiplicative factor is taken in such a way as to give
a nontrivial limit. The scattering amplitude implies that the conditional
p.d.f. of (p3,p4) with respect to this ‘Lebesgue measure’ on the manifold is
proportional to

1

ωp3ωp4

.

The constraint p0
3 + p0

4 = p0
1 + p0

2 shows that the manifold is bounded.
Since the above density is also bounded, we can conclude that the density
is integrable on the manifold and gives a legitimate probability measure.

The above reasoning can be made completely rigorous by replacing the
improper incoming state |p1,p2〉 by a proper state which approximates it
(for example, a Gaussian density), and then taking a sequence of approxi-
mations converging to the improper state.

Note that if we are in the non-relativistic limit, where |p1| � m and
|p2| � m, the constraint p0

3 + p0
4 = p0

1 + p0
2 approximately says

p2
3

2m
+

p2
4

2m
=

p2
1

2m
+

p2
2

2m
,

which is conservation of classical kinetic energy.

18.3. Words of caution

One should be aware of two things about the above calculation. Both
have been mentioned before but are worth repeating here. First, the calcu-
lation is not rigorous because we do not know how to rigorously define ϕ4

theory, or justify the Dyson expansion for this theory. However, if we ignore
these two (severe) problems, the rest of the calculation can be easily made
fully rigorous.

The second thing to be aware of is that ϕ4 theory does not describe any
known particle. It is purely a hypothetical theory that exhibits many of the
complexities of quantum field theories that describe real particles, and is
therefore useful for introducing various tools and techniques.



LECTURE 19

The Feynman propagator

Date: 11/5/2018
Scribe: Jimmy He

19.1. Towards a second order calculation in ϕ4 theory

Continuing in the setting of the previous lecture, we will now calculate
the second order term in the perturbative expansion for

〈p3,p4|S|p1,p2〉 ,
that is, the term

(−ig)2

2!

∫∫
d4x1d

4x2 〈0|a(p3)a(p4)T (:ϕ(x1)4::ϕ(x2)4:)a†(p1)a†(p2)|0〉 .

From the theory we developed for Feynman diagrams, we know that we have
to first put down vertices corresponding to each pi and xi, with 1 and 4 tails
respectively, and we have to tie up all tails so that there are no untied tails.
Moreover, Wick ordering stipulates that there cannot be self-loops at the
xi’s. It is not hard to check that the only surviving Feynman diagrams are
of the types shown in Figure 19.1.

x1 x2

p1 p3

p2 p4

x1

x2

p3p1

p4p2

Figure 19.1. All Feynman diagrams appearing in the sec-
ond order computation for ϕ4 theory belong to one of the
two types displayed above.

There are 2 × (4 × 3) × (4 × 3) × 2 diagrams of the first type shown in
Figure 19.1, where the first 2 occurs because x1 and x2 can be switched,
the 4 × 3 factors occur because we have to choose which tails of x1 and x2

should be tied to the incoming and outgoing momenta, and the last 2 occurs
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because we have decide how to tie the remaining tails of x1 and x2 to each
other. Similarly, there are 2× (4×3)× (4×3)×2×2 diagrams of the second
type, where the extra factor of 2 comes from being able to switch p3 and
p4. These are called one-loop diagrams because there is only one loop.

Let us analyze the first diagram. This corresponds to the following
product of contractions:

〈0|ϕ(x1)a†(p1)|0〉 〈0|ϕ(x1)a†(p2)|0〉
· (〈0|T ϕ(x1)ϕ(x2))|0〉)2 〈0|a(p3)ϕ(x2))|0〉 〈0|a(p4)ϕ(x2))|0〉 .

We already know how to compute all but one of the terms in the above
product, because we know that

〈0|a(p)ϕ(x)|0〉 =
1√
2ωp

ei(x,p),

〈0|ϕ(x)a†(p)|0〉 =
1√
2ωp

e−i(x,p).

(19.1)

We will now see how to compute 〈0|T ϕ(x1)ϕ(x2))|0〉.

19.2. The Feynman propagator

Definition 19.1. The Feynman propagator is a tempered distribution
on R1,3 formally defined as

∆F (x) = i

∫
d3p

(2π)32ωp
e−i|t|ωp+ip·x (19.2)

where x = (t,x) and ωp =
√

p2 +m2.

Note that ∆F (−x) = ∆F (x) because when we replace x by −x in the
integral, |t| is unchanged and p · x becomes −p · x, but we can do a change
of variable p 7→ −p to retrieve the original form.

Proposition 19.1. For any x1, x2 ∈ R1,3,

〈0|T ϕ(x1)ϕ(x2)|0〉 = −i∆F (x1 − x2).

Proof. Suppose that x1 = (t1,x1) and x2 = (t2,x2) with t1 ≥ t2. Then

〈0|T ϕ(x1)ϕ(x2)|0〉 = 〈0|ϕ(x1)ϕ(x2)|0〉 .
Recall that ϕ(x) = A(fx)+A†(fx) where fx = ei(x,p). Thus by Lemma 17.1,

〈0|ϕ(x1)ϕ(x2)|0〉 = (fx1 , fx2) =

∫
dλm(p)fx1(p)∗fx2(p)

=

∫
dλm(p)ei(x2−x1,p)

=

∫
d3p

(2π)3

1

2ωp
ei(x2−x1,p) = −i∆F (x1 − x2).

A similar derivation works if t1 < t2. �
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19.3. An alternative expression for the Feynman propagator

The form of the Feynman propagator given in (19.2) is hard to work
with, because of the presence of ωp in the denominator and in the exponent.
Fortunately, it has a much friendlier form.

Lemma 19.1. As a tempered distribution,

∆F (x) = lim
ε→0+

∫
R1,3

d4p

(2π)4

e−i(x,p)

−p2 +m2 − iε

Proof. Let x = (t,x) and let p = (p0,p). We first integrate the right
side in p0. Recall p2 = (p0)2 − p2. So we want to compute:∫ ∞

−∞

dp0

2π

e−itp
0

−(p0)2 + p2 +m2 − iε
Let’s write z = p0 and f(z) = −z2 + p2 + m2 − iε, so that we have to
compute ∫ ∞

−∞

dz

2π

e−itz

f(z)
.

We will calculate this integral using contour integration. For that, it is
important to understand the behavior of the quadratic polynomial f near
its roots. If ε = 0, the roots of f are ±ωp. For ε > 0, the roots are ±ωp,ε,
where ωp,ε is slightly below ωp in the complex plane, and −ωp,ε is slightly
above −ωp.

ωp

ωp,ε
−ωp

−ωp,ε

−R R <(z)

=(z)

ωp

ωp,ε
−ωp

−ωp,ε

−R R
<(z)

=(z)

Figure 19.2. Contours for t ≥ 0 and t < 0.

Suppose that t ≥ 0. Then we take a contour going from −R to R along
the real axis and then back to −R along a semicircle below the real axis (the
left side of Figure 19.3). Since t ≥ 0, we can show that the contribution of
the semicircular part approaches 0 as R→∞. If t < 0, we take the flipped
contour going above the real axis (the right side of Figure 19.3). There is
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only one pole that we have to consider for each case, and the residues for
the two poles are

−e
−itωp,ε

2ωp,ε
at ωp,ε,

eitωp,ε

2ωp,ε
at − ωp,ε.

So using Cauchy’s theorem gives∫ ∞
−∞

dz

2π

e−itz

f(z)
=

{
i(2ωp,ε)

−1e−itωp,ε if t ≥ 0,

i(2ωp,ε)
−1eitωp,ε if t < 0.

This completes the proof. �

19.4. Putting it all together

Using Lemma 19.1, we get

〈0|T ϕ(x1)ϕ(x2)|0〉2 = (−i∆F (x1 − x2))2

= − lim
ε→0+

∫∫
d4pd4p′

(2π)8

e−i(x1−x2,p+p
′)

(−p2 +m2 − iε)(−p′2 +m2 − iε) .

Putting this together with (19.1), we obtain

〈0|ϕ(x1)a†(p1)|0〉 〈0|ϕ(x1)a†(p2)|0〉
· (〈0|T ϕ(x1)ϕ(x2))|0〉)2 〈0|a(p3)ϕ(x2))|0〉 〈0|a(p4)ϕ(x2))|0〉

=
−1√

16ωp1ωp2ωp3ωp4

· lim
ε→0+

∫∫
d4pd4p′

(2π)8

ei(x2,p3+p4+p+p′)e−i(x1,p1+p2+p+p′)

(−p2 +m2 − iε)(−p′2 +m2 − iε) .

We will continue from here in the next lecture.



LECTURE 20

The problem of infinities

Date: 11/7/2018
Scribe: Sohom Bhattacharya

20.1. Completing the second order calculation in ϕ4 theory

Let us continue from where we stopped in the previous lecture. Recall
that we were trying to calculate the second order term in the perturbative
expansion for a scattering amplitude in ϕ4 theory, and we ended up with a
term containing the integral

lim
ε→0+

∫ ∫
d4pd4p′

(2π)8

ei(x2,p3+p4+p+p′)e−i(x1,p1+p2+p+p′)

(−p2 +m2 − iε)(−(p′)2 +m2 − iε) .

To get the second order term in the Dyson series, we have to integrate this
with respect to x1 and x2. Note that∫∫

d4x1d
4x2e

i(x2,p3+p4+p+p′)−i(x1,p1+p2+p+p′)

= (2π)8δ(4)(p3 + p4 + p+ p′)δ(4)(p1 + p2 + p+ p′).

Recall the identity∫ ∞
−∞

δ(x− z)δ(y − z)ξ(z)dz = δ(x− y)ξ(x),

which holds true in higher dimensions also. Using this identity, and ex-
changing integrals and limits at will, we get

lim
ε→0+

∫∫∫∫
d4x1d

4x2

∫
d4p

(2π)4

d4p′

(2π)4

ei(x2,p3+p4+p+p′)−i(x1,p1+p2+p+p′)

(−p2 +m2 − iε)(−p′2 +m2 − iε)

= lim
ε→0+

∫∫
d4pd4p′

δ(4)(p3 + p4 + p+ p′)δ(4)(p1 + p2 + p+ p′)

(−p2 +m2 − iε)(−p′2 +m2 − iε)

= lim
ε→0+

∫
d4p

δ(4)(p3 + p4 − p1 − p2)

(−p2 +m2 − iε)(−(−p1 − p2 − p)2 +m2 − iε) ,

which finally by a change of variable p 7→ −p yields

lim
ε→0+

∫
d4p

δ(4)(p3 + p4 − p1 − p2)

(−p2 +m2 − iε)(−(p1 + p2 − p)2 +m2 − iε) .
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Now let

M1 = lim
ε→0+

∫
d4p

(2π)4

1

(−p2 +m2 − iε)(−(p1 + p2 − p)2 +m2 − iε) ,

which is just the previous expression but without the Dirac delta, and di-
vided by (2π)4. Recalling the discussion from the previous lecture and the
first-order computation we did before, we now see that

〈p3,p4|S|p1,p2〉

= (g − ig2M +O(g3))
−i(2π)4δ(4)(p3 + p4 − p1 − p2)√

16ωp1ωp2ωp3ωp4

, (20.1)

where M is the sum of several terms like M1, multiplied by some appropriate
combinatorial factor. (It is not hard to argue that the δ(4) and the ω’s would
occur in every term of the perturbative expansion just as they did in the
first and second terms, which allows us to bring the O(g3) term inside the
bracket.)

The big issue with the integral defining M1 is that the integrand decays
like ‖p‖−4 as ‖p‖ → ∞ and this makes the integral divergent. This is the
simplest instance of the ‘problem of infinities’ in quantum field theory.

20.2. The idea of renormalization

The quantity we are interested in is g − ig2M . The theory gives M
as a divergent integral. However, experiment gives M as a finite quantity
(strictly speaking, not in ϕ4 theory, but in models that represent real phe-
nomena). Therefore, obviously there is something wrong with the theory.
The optimistic viewpoint is that the theory is approximately correct, which
means that the integral which diverged must be replaced with an integral
which converges by multiplying the integrand by a cutoff function, which is
given by nature but unknown to us. For example, in our context, this means
that M should be replaced by something like

M̃ = lim
ε→0+

∫
d4p

(2π)4

θ(p)

(−p2 +m2 − iε)(−(p1 + p2 − p)2 +m2 − iε)
+ other similar terms,

where θ(p) is a function that always takes values between 0 and 1, satisfies
θ(p) = 1 when |p| ≤ R for some large R, and decays fast enough in the
region |p| > R so that the integral converges. Further, we assume that g

is so small that we can effectively treat M̃ as a large but fixed value while
working out the perturbative expansion in g. Thus, terms like O(gk) may

implicitly contain powers of quantities like M̃ .
The problem is that we do not know the cutoff function θ that is provided

by nature. This hurdle is overcome as follows, which is the main idea in

renormalization. Suppose that we can observe the value of M̃ for certain
values p∗1, p∗2, p∗3, p∗4 of the incoming and outgoing momenta. For example,
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they may all be close to (m, 0, 0, 0), which is the non-relativistic scenario

realized in a laboratory experiment. Call this value M̃∗. Then the theory

will allow you to calculate M̃ for any p1, p2, p3, p4, even if you do not
know the cutoff function or the coupling constant, through a process called
renormalization. This is roughly described as follows, for the problem that
we are discussing.

For the laboratory values p∗1, p∗2, p∗3, p∗4, suppose that the true observed
amplitude is

A∗
−i(2π)4δ(4)(p∗3 + p∗4 − p∗1 − p∗2)√

16ωp∗1
ωp∗2

ωp∗3
ωp∗4

.

(Here we assume that p∗3 + p∗4 − p∗1 − p∗2 = 0, so that A∗ can be measured.)
Then by (20.1),

A∗ = g − ig2M̃∗ +O(g3), (20.2)

where M̃∗ is the value of M̃ in the laboratory setting. Also, for our given
p1, p2, p3, p4,

〈p3,p4|S|p1,p2〉 = A
−i(2π)4δ(4)(p3 + p4 − p1 − p2)√

16ωp1ωp2ωp3ωp4

,

where

A = g − ig2M̃ +O(g3). (20.3)

The quantity A is our main object of interest, which we cannot evaluate if
we do not know the cutoff function θ. We will now argue that in fact we can
approximately evaluate A even if do not know θ, purely using the amplitude
A∗ observed in the laboratory. To see this, first note that by (20.2),

g = A∗ + ig2M̃∗ +O(g3). (20.4)

Next, note that since A∗ = O(g), squaring the equation (20.2) we obtain

g2 = A2
∗ +O(g3). (20.5)

Substituting the values of g and g2 from (20.4) and (20.5) into (20.3), we
get

A = A∗ + ig2M̃∗ − ig2M̃ +O(g3)

= A∗ − iA2
∗(M̃ − M̃∗) +O(g3). (20.6)

It turns out that if the cutoff function θ satisfies θ(p) ∈ [0, 1] for all p,
θ(p) = 1 for |p| ≤ R, and decays fast enough the region |p| > R, then the
limit

L := lim
R→∞

(M̃ − M̃∗)
exists and is finite, irrespective of how θ varies with R, as long as it satisfies
the above constraints. (We will prove this in the next couple of lectures.)

We can then substitute L for M̃ −M̃∗ in (20.6) to get an approximate value
of A in terms of A∗, with O(g3) error. This is the key idea in perturbative
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renormalization, which becomes harder to manage for higher orders of per-
turbation theory. If, however, it can be done for all orders, the theory is
called ‘perturbatively renormalizable’.

Note that the above calculation was slightly complicated because we
wanted to get an approximation for A solely in terms of A∗, and not using
any information about θ or g. If we know g, then the problem becomes

easier, because we can simply approximate M̃ by L+ M̃∗ in (20.3).



LECTURE 21

One-loop renormalization in ϕ4 theory

Date: 11/9/2018
Scribe: Laura Lyman

21.1. A toy example

Recall the basic idea of renormalization from the previous lecture: Sup-
pose that we want to carry out a calculation for a physical system, where we
input some quantity a, where a can be a vector or scalar (e.g. the 4-tuple of
incoming and outgoing momenta p1, p2, p3, p4, as considered in the previ-
ous lecture), and the output is a scalar f(a) (e.g. the probability amplitude
〈p3,p4|S|p1,p2〉). As seen in the previous lecture, sometimes the theory
will yield a prediction for f(a) in terms of divergent integrals. However the
observed value of f(a) is finite. The optimistic viewpoint is that the theory
is approximately correct, in the sense that the divergent integrals should
be replaced with integrals with some cutoffs (regularized versions). Nature
provides the cutoff function θ, but it is unknown to us. The solution to this
obstacle is that we can still approximately recover f(a) if we know f(a′) for
any single a′ even if θ is unknown. When this can be done for all orders of
perturbation theory, the theory is called perturbatively renormalizable.

To understand the situation, consider the following toy example. Sup-
pose that the input quantity is some number a > 0, and the output predicted
by theory is

ftheory(a) =

∫ ∞
0

dx

x+ a
=∞.

However, suppose that the experimentally observed output f(a) is always
finite. To resolve this discrepancy, assume that the theory is approximately
correct, in the sense that the true f(a) is given by

f(a) =

∫ ∞
0

θ(x)dx

x+ a

where θ is a function such that θ(x) ∈ [0, 1] for all x, θ(x) = 1 when x ≤ R
for some large R ∈ R, and θ decays sufficiently fast in the region x > R so
that the integral converges. Then

f(a)− f(a′) =

∫ ∞
0

θ(x)(a′ − a)dx

(x+ a)(x+ a′)
=

∫ ∞
0

dx(a− a′)
(x+ a)(x+ a′)

+O(1/R).
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Thus, we can approximately recover f(a) for any a if we observe the value
of f(a′) for some a′, even if we do not know θ.

21.2. Main result

Recall that we were trying to calculate the second order term in the
Dyson expansion of

〈p3,p4|S|p1,p2〉.
There were no divergent integrals in the first order term. However, in the
second order, each Feynman diagram had a single loop, which gave divergent
integrals like

lim
ε→0+

∫
d4p

(2π)4

1

(−p2 +m2 − iε)(−(w − p)2 +m2 − iε)
where w = p1 + p2. Let us therefore assume that the “true” value is

U(w, θ) := lim
ε→0+

∫
d4p

(2π)4

θ(p)

(−p2 +m2 − iε)(−(w − p)2 +m2 − iε)
where θ : R3 → [0, 1] is a function such that θ(p) = 1 when |p| ≤ R, and θ
decays sufficiently fast in the region |p| > R. The following theorem shows
that the above integral can be approximately computed for any w if we know
its value at a single w′, even if we do not know θ.

Theorem 21.1 (One-loop renormalization). For any w,w′ ∈ R1,3

lim
R→∞

(U(w, θ)− U(w′, θ))

exists, is finite, and depends only on (w,w′). Here we assume that θ varies
with R in such a way that we always have θ(p) = 1 for |p| ≤ R.

Why is the situation of Theorem 21.1 harder to analyze than the toy
example discussed above? The difference is that terms like −p2 +m2 in the
denominator introduce infinite manifolds of singularities as ε → 0. To get
rid of such singularities, we need two technical tools.

Lemma 21.1 (Feynman parameter). Suppose that A,B ∈ C are such
that the line segment joining A and B in the complex plane does not pass
through 0. Then

1

AB
=

∫ 1

0
du

1

(Au+B(1− u))2
.

(Here u is called a Feynman parameter.)

Proof. Note that

d

du

[
1

(B −A)(Au+B(1− u))

]
=

1

(Au+B(1− u))2
,

and substitute above. �
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Lemma 21.2 (Wick rotation). Suppose that f : C→ C is a holomorphic
function which has no poles in the region {x + iy : xy ≥ 0}. Furthermore,
suppose that |f(z)| ≤ C|z|−1−ε in this region for some C < ∞ and ε > 0.
Then ∫ ∞

−∞
dxf(x) = i

∫ ∞
−∞

dxf(ix).

Proof. To see this, consider the following contour. Starting from the
origin, traverse the blue path and then the red path in Figure 21.1.

R

−R

iR

0

−iR

Figure 21.1. Contour traversed from the origin first along
the blue path and then along the red path.

Note that f has no poles enclosed by this contour. The decay condition
implies that the integral contribution on the circular arcs tends to 0 as R→
∞. Thus, the result follows by Cauchy’s theorem and taking R→∞. �

Corollary 21.1. For any α > 0, E ∈ R, and ε > 0,∫ ∞
−∞

dx
1

(−αx2 + E − iε)2
= i

∫ ∞
−∞

dx
1

(αx2 + E − iε)2
.

Proof. Since ε > 0, it is easy to see that the integrals are both well-
defined and finite. Let

f(z) =
1

(−αz2 + E − iε)2
.

Then there is some constant C such that |f(z)| ≤ C|z|−2 for all |z|. More-
over, observe that

−αz2 = −α(x2 − y2 + 2ixy) = −α(x2 − y2)− 2iαxy.
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So if xy ≥ 0, then =(−αz2) ≤ 0, and therefore −αz2 +E − iε 6= 0. Thus we
can apply Wick rotation (Lemma 21.2) and obtain the desired result. �

21.3. Towards the proof of the main result

Let us now apply the above techniques to U(w, θ) to start the proof of
Theorem 21.1. First observe that by the Feynman parameter trick,

U(w, θ) = lim
ε→0+

∫
d4p

(2π)4

θ(p)

−(p2 +m2 − iε)(−(w − p)2 +m2 − iε)

= lim
ε→0+

∫ 1

0
du

∫
d4p

(2π)4

θ(p)

(−(w − p)2u− p2(1− u) +m2 − iε)2
.

By the change of variable p→ p+ uw, this equals

= lim
ε→0+

∫ 1

0
du

∫
d4p

(2π)4

θ(p + uw)

(−p2 − u(1− u)w2 +m2 − iε)2
.

Let us first integrate in p0, fixing u and p. By Wick rotation (Corollary 21.1),
we get ∫ ∞

−∞

dp0

2π

1

(−(p0)2 + p2 − u(1− u)w2 +m2 − iε)2

= i

∫ ∞
−∞

dp0

2π

1

(‖p‖2 − u(1− u)w2 +m2 − iε)2
,

where ‖p‖ is the Euclidean norm of p. Thus,

U(w, θ) = i lim
ε→0+

∫ 1

0
du

∫
d4p

(2π)4

θ(p + uw)

(‖p‖2 − u(1− u)w2 +m2 − iε)2
.

Let us now write

U(w, θ) = U1(w, θ) + U2(w, θ)

where U1 is the integral over ‖p‖ ≤ R/2 and U2 is the rest of the integral.

Lemma 21.3. If R is sufficiently large, we have

U1(w, θ) =
i

16π2

∫ 1

0
duA(u),

where

A(u) = log((R/2)2 − u(1− u)w2 +m2)− log(−u(1− u)w2 +m2)

− (R/2)2

(R/2)2 − u(1− u)w2 +m2
,

where we use the convention log(−x) = log x− iπ for x > 0.
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Proof. If R is sufficiently large, note that θ(p+uw) = 1 for any p such
that ‖p‖ ≤ R/2, and any u ∈ [0, 1]. Thus, letting C = −u(1−u)w2 +m2−iε
and using polar coordinates, we get

U1(w, θ) = i lim
ε→0+

∫ 1

0
du

∫
‖p‖≤R/2

d4p

(2π)4

1

(‖p‖2 + C)2

= lim
ε→0+

i

16π4

∫ 1

0
du (2π2)

∫ R/2

0

r3dr

(r2 + C)2
.

Now∫ R/2

0

r3dr

(r2 + C)2
=

∫ R/2

0

rdr

r2 + C
− C

∫ R/2

0

rdr

(r2 + C)2

=
1

2

[
log((R/2)2 + C)− logC

]
+
C

2

[
1

(R/2)2 + C
− 1

C

]
=

1

2

[
log((R/2)2 + C)− logC − (R/2)2

(R/2)2 + C

]
,

where we use the branch of the logarithm that is defined on C \ (−∞, 0].
Now sending ε→ 0+ in the definition of C completes the proof. �





LECTURE 22

A glimpse at two-loop renormalization

Date: 11/12/2018
Scribe: Lingxiao Li

22.1. Finishing the proof for one-loop renormalization

In this lecture we will first complete the proof of Theorem 21.1. Recall
the quantity U(w, θ) from the previous lecture and the decomposition U =
U1 +U2. From the expression we obtained for U1(w, θ), it is easy to see that

lim
R→∞

(U1(w, θ)− U1(w′, θ)) = L(w)− L(w′),

where

L(w) =
−i

16π2

∫ 1

0
du log(m2 − u(1− u)w2).

As before, here we use the convention that log(−x) = log x− iπ when x > 0.
Our next step is to prove the following lemma.

Lemma 22.1.

lim
R→∞

(U2(w, θ)− U2(w′, θ)) = 0.

This will imply Theorem 21.1, and will moreover prove that

lim
R→∞

(U(w, θ)− U(w′, θ)) = L(w)− L(w′).

Proof of Lemma 22.1. By definition, we have

U2(w, θ) = i lim
ε→0+

∫ 1

0
du

∫
‖p‖≥R/2

d4p

(2π)4

θ(p + uw)

(‖p‖2 − u(1− u)w2 +m2 − iε)2
.

If ‖p‖ is sufficiently large (by letting R be large), the denominator in the
integrand will be far away from 0, so we can interchange limit and integrals
and send ε→ 0 to get

U2(w, θ) = i

∫ 1

0
du

∫
‖p‖≥R/2

d4p

(2π)4

θ(p + uw)

(‖p‖2 − u(1− u)w2 +m2)2

= i

∫ 1

0
du

∫
‖p−uw‖≥R/2

d4p

(2π)4

θ(p)

(‖p− uw‖2 − u(1− u)w2 +m2)2
,

93
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where the last step follows by the change of variable p 7→ p − uw. Let us
further split the integral as

U3(w, θ) = i

∫ 1

0
du

∫
‖p‖≥R/2

d4p

(2π)4

θ(p)

(‖p− uw‖2 − u(1− u)w2 +m2)2
,

and U4(w, θ) = U2(w, θ)−U3(w, θ). Let ∆(w,R) be the symmetric difference
of the regions {p : ‖p‖ ≥ R/2} and {p : ‖p − uw‖ ≥ R/2}. Since θ ∈ [0, 1]
everywhere, it follows that

|U4(w, θ)| ≤
∫ 1

0
du

∫
∆(w,R)

d4p

(2π)4

1

(‖p− uw‖2 − u(1− u)w2 +m2)2
.

Since Vol(∆(w,R)) = O(R3) and the integrand in the above display is of
order R−4 in ∆(w,R), it follows that |U4(w, θ)| = O(R−1) as R → ∞. So
to complete the proof of the lemma, it remains to show that

lim
R→∞

(U4(w, θ)− U4(w′, θ)) = 0.

To prove this, note that

|U4(w, θ)− U4(w′, θ)| ≤
∫ 1

0
du

∫
‖p‖≥R/2

d4p

(2π)4
|θ(p)F (p, u, w,w′)|

≤
∫ 1

0
du

∫
‖p‖≥R/2

d4p

(2π)4
|F (p, u, w,w′)|,

where

F (p, u, w,w′) =
1

(‖p‖2 − u(1− u)w2 +m2)2

− 1

(‖p‖2 − u(1− u)w′2 +m2)2
.

It is easy to see that there is some R0 and some C, depending only on m,
w and w′, such that |F (p, u, w,w′)| ≤ C‖p‖−5 whenever ‖p‖ ≥ R0. Thus,

lim
R→∞

|U4(w, θ)− U4(w′, θ)| ≤ lim
R→∞

∫ 1

0
du

∫
‖p‖≥R/2

d4p

(2π)4
C‖p‖−5 = 0.

This completes the proof of the lemma and hence of Theorem 21.1. �

22.2. Wick ordering as a form of renormalization

Suppose we use ϕ(x)4 in the Hamiltonian of ϕ4 theory instead of :ϕ(x)4:.
Then we will end up getting many more exploding integrals, like the ones
here, even in the first order of perturbation theory. But after renormaliza-
tion, all these infinities will cancel out, and we will get exactly the same
predictions as we did in the Wick ordered version. Hence Wick ordering is
like a ‘preemptive’ renormalization.



22.4. A GLIMPSE AT TWO-LOOP RENORMALIZATION 95

22.3. The counterterm method

The counterterm method is a different (and more conventional) approach
for doing the same calculations that we did above. The counterterm method
involves the following:

• Assume a form of the cutoff.
• Reparametrize the model parameters (in our case, only g) depend-

ing on the cutoff and express the new Hamiltonian as the old Hamil-
tonian plus some extra terms involving the new parameters, which
are called counterterms.
• The reparametrization should be done in such a way that the results

of the calculations automatically appear in renormalized form.

To clarify the above ideas, let us consider the example of one-loop renor-

malization in ϕ4 theory. Fix a cutoff and recall the quantities M̃ and M̃∗

that appeared in our calculations in Section 20.2. Let us reparametrize our
‘bare’ coupling constant g as

g = gr + ig2
rM̃
∗,

where gr is a new parameter, and the subscript r stands for ‘renormalized’.
Then notice that our quantity of interest from Section 20.2 is

g − ig2M̃ +O(g3) = (gr + ig2
rM̃
∗)− i(gr + ig2

rM̃
∗)2M̃

= gr − ig2
r (M̃ − M̃∗) +O(g3

r ).

By Theorem 21.1, we now know that M̃ − M̃∗ approaches a finite limit
as the cutoff is removed. Thus, when the bare coupling parameter g is
reparametrized in terms of the renormalized parameter gr, there are no
infinities in the second order of perturbation theory. This reparametriza-
tion is conventionally described by saying that we add the counterterm
1
4! ig

2
rM̃
∗:ϕ(x)4: to the interaction Hamiltonian density 1

4!gr:ϕ(x)4:. Note
that the counterterm depends on the choice of the cutoff, as well the choice
of the momenta p∗1, p∗2, p∗3, p∗4 that we chose for our hypothetical laboratory
experiment in Section 20.2.

22.4. A glimpse at two-loop renormalization

For the third order of perturbation in ϕ4 theory, we will end up with an
expression like

〈p3,p4|S|p1,p2〉

= (g − ig2M2 + g3M3 +O(g4))
−i(2π)4δ(4)(p3 + p4 − p1 − p2)√

16ωp1ωp1ωp3ωp4

,

where M2 and M3 are expressed as sums of divergent integrals. As in Sec-
tion 20.2, we assume that these are only approximations, and the true values
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are M̃2 and M̃3, obtained by cutting off the divergent integrals in some suit-
able way. We are interested in evaluating the amplitude

A = g − ig2M̃2 + g3M̃3 +O(g4). (22.1)

Suppose that A∗ is the laboratory value of this amplitude, for incoming and
outgoing momenta p∗1, p∗2, p∗3, p∗4. Express A∗ as

A∗ = g − ig2M̃∗2 + g3M̃∗3 +O(g4). (22.2)

Then how can we recover A from A∗? Recall that in one-loop renormaliza-
tion, we got

A = A∗ − iA2
∗(M̃2 − M̃∗2 ) +O(g3),

and then we showed that M̃2−M̃∗2 has a finite limit as the cutoff is removed.
The story for two-loop renormalization is quite a bit more complicated.
First, note that by (22.2),

g = A∗ + ig2M̃∗2 − g3M̃∗3 +O(g4) (22.3)

Squaring both sides, and using the fact that A∗ = O(g), we get

g2 = A2
∗ + 2ig2A∗M̃

∗
2 +O(g4).

The above expression shows, in particular, that g2 = A2
∗ +O(g3). Plugging

this in place of the g2 on the right and using A∗ = O(g) gives

g2 = A2
∗ + 2iA3

∗M̃
∗
2 +O(g4). (22.4)

Cubing both sides of (22.3) and again using A∗ = O(g), we have

g3 = A3
∗ +O(g4). (22.5)

Using the values of g2 and g3 from (22.4) and (22.5) in (22.3) gives

g = A∗ + iA2
∗M̃
∗
2 −A3

∗(2(M̃∗2 )2 + M̃∗3 ) +O(g4). (22.6)

Plugging in the values of g, g2 and g3 obtained in (22.6), (22.4) and (22.5)
into equation (22.1), we get

A = A∗ + iA2
∗M̃
∗
2 −A3

∗(2(M̃∗2 )2 + M̃∗3 )

− i(A2
∗ + 2iA3

∗M̃
∗
2 )M̃2 +A3

∗M̃3 +O(g4)

= A∗ − iA2
∗(M̃2 − M̃∗2 ) +A3

∗(M̃3 − M̃∗3 + 2M̃∗2 (M̃2 − M̃∗2 )) +O(g4).

Therefore, for renormalizability, we need that as the cutoff is removed, both

M̃2−M̃∗2 and M̃3−M̃∗3 +2M̃∗2 (M̃2−M̃∗2 ) converge to finite limits. The first
one we already know, and this is true for the second one also, but much more
complicated. We will not attempt to prove it. We end with the remark that

the convergence of a quantity as complicated as M̃3− M̃∗3 + 2M̃∗2 (M̃2− M̃∗2 )
to a finite limit as the cutoff is removed indicates that something deeper is
going on. Indeed, more is true: ϕ4 theory is renormalizable in every order
of perturbation theory. However, we do not have the time to prove that in
this course.
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22.5. Counterterms for two-loop renormalization

Instead of the relatively complicated derivation above, we could have
also used the counterterm method for two-loop renormalization in ϕ4 the-
ory. The proper way to use the counterterm method for this purpose is to
reparametrize g as

g = gr + ig2
rM̃
∗
2 − g3

r (M̃
∗
3 + 2(M̃∗2 )2).

Indeed, an easy verification shows that plugging the above into (22.1) gives

A = gr − ig2
r (M̃2 − M̃∗2 ) + g3

r (M̃3 − M̃∗3 + 2M̃∗2 (M̃2 − M̃∗2 )) +O(g4
r ).

Thus, if we accept out previous claim that M̃3 − M̃∗3 + 2M̃∗2 (M̃2 − M̃∗2 )
converges to a finite limit as the cutoff is removed, then there are no infinities
in the third order of perturbation theory for ϕ4 theory after adding the

counterterms 1
4! ig

2
rM̃
∗
2 :ϕ(x)4: and − 1

4!g
3
r (M̃3−M̃∗3 +2M̃∗2 (M̃2−M̃∗2 )):ϕ(x)4:

to the the interaction Hamiltonian density 1
4!gr:ϕ(x)4:.
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The model for free photons
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23.1. Photons

Photons are massless particles moving at the speed of light. In this
lecture we will construct a model for free photons. This is a real model that
is used in physics.

Recall that the four-momentum of a particle with mass m and velocity
v (in some coordinate system) is the vector

p =

(
m√

1− v2
,

mv√
1− v2

)
. (23.1)

For photons, m = 0 and |v| = 1, so we get 0/0 in (23.1). However, we also
know that the four-momentum of a particle of mass m satisfies p2 = m2, so
that p ∈ Xm. There is no problem in defining the manifold

X0 = {p : p2 = 0, p0 ≥ 0}.
(This is just the surface of a cone in R1,3.) So we can hypothesize that
photons also have four-momenta, which belong to X0. The manifold X0

comes equipped with the Lorentz-invariant measure λ0, defined as before.
We will later use the fact that λ0 has no point masses.

It is a physical fact the four-momentum is not the only quantity that
characterizes a photon. A photon also has some internal degrees of freedom,
called spin. Therefore it does not suffice to take L2(X0, dλ0) to be the
Hilbert space for photons. Constructing the Hilbert space for photons is a
slightly complicated affair, which we now carry out.

23.2. The Gupta–Bleuler construction

The procedure for constructing the Hilbert space for photons is called
the Gupta–Bleuler quantization. It goes as follows. Start with the vector
space of all f : X0 → C4 such that each coordinate of f is in L2(X0, dλ0),
which is denoted by L2(X0, dλ0,C4). We will simply call this space H. (This
is not the final Hilbert space, but we’ll use it.) For w, z ∈ C4, define the
Minkowski inner product

(w, z) = (w0)∗z0 − (w1)∗z1 − (w2)∗z2 − (w3)∗z3.

99
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If Λ ∈ SO↑(1, 3), define Λz as expected: if z ∈ C4 equals x+ iy, with x, y ∈
R4, then let Λz = Λx + iΛy. It is simple to check that (Λz,Λw) = (z, w).
For ξ, ψ ∈ H, define

(ξ, ψ) = −
∫
dλ0(p) (ξ(p), ψ(p)). (23.2)

This defines a sesquilinear form on H, but it is not positive-definite. To
extract a subspace on which this form is positive semidefinite, define

H′ = {ξ ∈ H : (p, ξ(p)) = 0 for λ0-a.e. p}.

Lemma 23.1. The inner product defined in (23.2) is positive semidefinite
on H′.

Proof. Take any ξ ∈ H′. Suppose that p is a point so that (p, ξ(p)) = 0,
and p 6= 0. Write

p = (p0,p) = (p0, p1, p2, p3).

Since p ∈ X0, we have

(p0)2 = (p1)2 + (p2)2 + (p3)2.

Also, p 6= 0. So p0 > 0 and p 6= 0. Let A ∈ SO(3) be such that Ap = (0, 0, a)
for some a. Since A is a rotation, |a| = |p|. Moreover, we can arrange it so
that a = |p| = p0. Let

Λ =

(
1 0
0 A

)
∈ SO↑(1, 3).

Let x = ξ(p), and let z = Λx. Note that Λp = (p0, 0, 0, p0). Thus,

(p, x) = (Λp,Λx) = (Λp, z) = p0(z0 − z3).

But we know that

(p, x) = (p, ξ(p)) = 0,

and p0 > 0. Therefore, z0 = z3. Then

(ξ(p), ξ(p)) = (z, z) = (z0)2 − (z1)2 − (z2)2 − (z3)2 = −(z1)2 − (z2)2 ≤ 0.

Therefore, (ξ, ξ) ≥ 0, using that λ0 has no point mass at 0. This completes
the proof of the lemma. �

Having defined H′, define Hnull = {ξ ∈ H′ : (ξ, ξ) = 0}. Define Hphys =
H′/Hnull. ThenHphys is a Hilbert space under the Minkowski inner product.
One can also check that it is complete. This is the Hilbert space for a single
photon. For arbitrary numbers of photons, we take the bosonic Fock space
of Hphys.
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23.3. The representation for a free photon

Having defined the Hilbert space, it remains to define the representation
of the Poincaré group that describes the spacetime trajectory of a photon.
Recall that in quantum field theory, the full spacetime description of a sys-
tem is given by a state in a Hilbert space. Recall also the definition of the
Poincaré group P = R1,3 o SO↑(1, 3), which is the group of symmetries of
R1,3. The action is of (a,A) ∈ P on a point x ∈ R1,3 is (a,A)x = a + Ax.
Finally, recall the postulate that for any quantum system, there is a strongly
continuous unitary representation U of P in the Hilbert space for the sys-
tem, such that if an observer sees the system in state ψ, then in the different
coordinate system obtained by the action of (a,A), the system appears to
be in state U(a,A)ψ.

The representation U of P in Hphys that describes the evolution of a free
photon is defined as follows. For ψ ∈ H, define

(U(a,A)ψ)(p) = ei(a,p)Aψ(A−1p).

It is easy to check that this is a representation of P in H. Moreover, it is
easy to check that U(a,A) maps H′ into H′, and moreover it descends to
a representation in Hphys. To prove the first claim, note that since λ0 is
Lorentz-invariant and (p, ψ(p)) = 0 for λ0-a.e. p for any ψ ∈ H′,∫

dλ0(p) (p, U(a,A)ψ(p)) =

∫
dλ0(p) (p, ei(a,p)Aψ(A−1p))

=

∫
dλ0(p) ei(a,p) (A−1p, ψ(A−1p))︸ ︷︷ ︸

= 0 for λ0-a.e. p

= 0.

The proof of the second claim follows by showing that U(a,A) maps Hnull
into Hnull in a similar manner. Thus, U is a representation of P in Hphys.
Moreover, U is a unitary representation:

(U(a,A)ψ,U(a,A)ξ) = −
∫
dλ0(p) (ei(a,p)Aψ(A−1p), ei(a,p)Aξ(A−1p))

= −
∫
dλ0(p) (Aψ(A−1p), Aξ(A−1p))

= −
∫
dλ0(p) (ψ(A−1p), ξ(A−1p))

= −
∫
dλ0(p) (ψ(p), ξ(p))

= (ψ, ξ),

where in the third equality, we used the fact that the inner product is
Lorentz-invariant, and in the fourth inequality, we used the fact that λ0

is Lorentz-invariant.
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23.4. The quantized electromagnetic four-potential

Just as we had the massive free field associated with our massive scalar
boson, there is a field associated with photons. It’s called the electromag-
netic four-potential. Consider our original H = L2(X0, dλ0,C4) with the
Euclidean inner product, defined as

(ξ, ψ)E :=

∫
dλ0(p)

3∑
µ=0

ξµ(p)∗ψµ(p).

Then H is a Hilbert space under this inner product. Consider the Fock space
B of this Hilbert space, and our familiar operator-valued distributions A and
A†. Define two other operators B and B† as follows. Recall the matrix η
defined in (9.1). Then for any ξ = (ξ0, ξ1, ξ2, ξ3) ∈ H, we can naturally
define ηξ = (ξ0,−ξ1,−ξ2,−ξ3). Let

B(ξ) = A(−ηξ),
B†(ξ) = A†(ξ).

Then B, B† are also operator-valued distributions on H, and they have the
properties that

[B(ξ), B(ψ)] = [B†(ξ), B†(ψ)] = 0,

[B(ξ), B†(ψ)] = (ξ, ψ)︸ ︷︷ ︸
our inner product

1.

This is because

[B(ξ), B†(ψ)] = [A(−ηξ), A†(ψ)] = (−ηξ, ψ)E1 = (ξ, ψ)1.

For f ∈ S (R4), µ = 0, 1, 2, 3, define

Aµ(f) = B(f̂ eµ) +B†(f̂ eµ),

where eµ is the µth standard basis vector and f̂ is the Fourier transform
of f on R1,3, restricted to X0. The 4-tuple A = (A0, A1, A2, A3) is called
the quantized electromagnetic four-potential. Each Aµ is an operator-valued
distribution that takes f ∈ S (R4) to a linear operator Aµ(f) on B0, where
B0 is our familiar dense subspace of the Fock space B.



LECTURE 24

The electromagnetic field

Date: 11/26/2018
Scribe: Jae Hee Lee

24.1. Relationship between the two Hilbert spaces

Recall the spaces H, H′ and Hphys from the previous lecture. The space
Hphys is the Hilbert space for photons, whereas the quantized electromag-
netic four-potential A was defined on H. Recall that H carries the Eu-
clidean inner product, while the inner product on Hphys is derived from the
Minkowski inner product on H′. So how are the two Hilbert spaces related?
More importantly, how does the electromagnetic four-potential act on the
bosonic Fock space for photons? This happens as follows.

Let B be the bosonic Fock space of H and let B′ be the bosonic Fock
space of H′ (all under the Euclidean inner product). Then B′ is a closed
subspace of B. The Minkowski sesquilinear form and the Minkowski norm
on H′ extends to B′ in the following way. We first define on the simple
tensors

(ξ1 ⊗ · · · ⊗ ξn, ψ1 ⊗ · · · ⊗ ξn) =

n∏
i=1

(ξi, ψi),

and use linearity and the inequality

‖ξ‖ =
√

(ξ, ξ) ≤ ‖ξ‖E for ξ ∈ H′

to extend this to B′. Note that the expression
√

(ξ, ξ) makes sense because
the Minkowski form is nonnegative on H′. Next, we define

Bnull := {ψ ∈ B′ : ‖ψ‖ = 0},
which is a closed subspace of B′, and correspondingly define

Bphys = B′/Bnull.
Note that Bphys is equipped with the Euclidean inner product.

One can show that there is a canonical Hilbert space isomorphism be-
tween Bphys and the bosonic Fock space of Hphys (which was constructed
using the Minkowski inner product). The construction of this isomorphism,
however, is slightly involved.

The upshot is that we can now completely forget about the Minkowski
norm and always work with Bphys with the Euclidean inner product as the
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bosonic Fock space for photons. In future calculations for quantum electro-
dynamics, we will simply work with the bosonic Fock space B of the Hilbert
space H, and the operator-valued distributions (Aµ)0≤µ≤3 acting on this
space.

24.2. Action of the electromagnetic four-potential

Recall that for f ∈ S (R4) and 0 ≤ µ ≤ 3, the operator Aµ(f) acts on B.
However, it is not clear if it defines an operator on the quotient space Bphys.
In particular this is because we don’t know if Bnull gets sent into Bnull by
these operators.

In fact, this is not true for the Aµ’s. What is true, yet, is that certain
linear combinations of Aµ’s are well-defined on Bphys. For example, define

Fµν := ∂µAν − ∂νAµ,

where ∂µ denotes the partial derivative ∂/∂xµ. Then it turns out that for
any f ∈ S (R4), Fµν(f) is a well-defined operator on Bphys. The array
F = (Fµν)0≤µ,ν≤3 of operator-valued distributions is known as the electro-
magnetic field, for reasons that will be clear in the next section.

Another example of a class of operators that act on Bphys is the following.
Suppose that f0, f1, f2, f3 ∈ S (R4) satisfy

∂0f0 − ∂1f1 − ∂2f2 − ∂3f3 ≡ 0.

Then it can be shown that

A0(f0)−A1(f1)−A2(f2)−A3(f3) (24.1)

acts on Bphys.
The physical meaning of the above discussion is the following. The

electromagnetic four-potential A is not directly observable; it is only an
abstract object. The things that we can observe are exactly those operators
that are defined on Bphys.

24.3. Classical (Maxwell) theory of electromagnetism

Let us recall the classical theory of electromagnetism. In Maxwell’s
formulation, we are given two time-dependent vector fields on our physical
space, the electric field

E : R1,3 → R3

and the magnetic field

B : R1,3 → R3.
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The evolution of these fields is governed by the Maxwell equations, which
we write in the units where c = 1:

∇ ·E = 4πρ (24.2)

∇ ·B = 0 (24.3)

∇×E = −∂B

∂t
(24.4)

∇×B = 4πJ +
∂E

∂t
(24.5)

where ρ is the charge density (charge per unit volume) and J is the current
density (current per unit area). In particular by knowing both ρ and J we
may determine the evolution of the electric and magnetic fields.

In the absence of electrons, we have ρ ≡ 0 and J ≡ 0. The equations that
we get in this situation are known as ‘Maxwell’s equations in the vacuum’.
A class of solutions of Maxwell’s equations in the vacuum can be constructed
as follows. Take any smooth vector field

A : R1,3 → R4, A = (A0, A1, A2, A3)

and define the classical electromagnetic field F = (Fµν)0≤µ,ν≤3 as

Fµν = ∂µAν − ∂νAµ.
Given F , define two vector fields E and B as

F =


0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
Ez −By Bx 0

 .

Then from the definition of F , one gets the “Bianchi identity”

∂λFµν + ∂µFνλ + ∂νFλµ = 0 ∀λ, µ, ν
which implies equation (24.3) and (24.4) of the Maxwell equations in the
vacuum. If we further assume that A satisfies the “equation of evolution”

∂0F0ν − ∂1F1ν − ∂2F2ν − ∂3F3ν = 0 ∀ν. (24.6)

we recover equations (24.2) and (24.5) of the Maxwell equations in the vac-
uum.

Now it turns out that any solution of Maxwell’s equations in the vacuum
is representable in the above manner. The vector field A is known as the
classical electromagnetic four-potential. However, given E and B, the field
A is not unique; for any smooth λ : R1,3 → R (a gauge transformation),

A′µ(x) = Aµ(x) + ∂µλ(x)

also yields the same E and B. In fact, this describes the set of all solutions
for given E and B. The procedure for choosing a unique representative is
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called gauge fixing. There are many ways to do this, but one way is to
impose the Lorenz gauge condition,

∂0A0 − ∂1A1 − ∂2A2 − ∂3A3 ≡ 0.

(Note that this ‘Lorenz’ without a ‘t’ — not the same as the Lorentz in
Lorentz transforms.)

24.4. From classical to quantized

The quantized electromagnetic four-potential A = (Aµ)0≤µ≤3 that we
defined using the Gupta–Bleuler approach is a quantization of the classi-
cal electromagnetic four-potential, in the sense that it satisfies the vacuum
Maxwell equations formally. Moreover, it also satisfies the Lorenz gauge
condition, in the sense that for any f ∈ S (R4),

∂0A0(f)− ∂1A1(f)− ∂2A2(f)− ∂3A3(f) = 0

as an operator on Bphys.

24.5. A note on the Einstein convention

Many of the expressions in this lecture could have been written much
more compactly using Einstein’s conventions for special relativity. In par-
ticular, there are two important rules:

• If we have a 4-tuple of objects (aµ)0≤µ≤3, then raising µ changes the
sign of the last three. That is, a0 = a0, but a1 = −a1, a2 = −a2,
and a3 = −a3. If the indices were raised to begin with, the lowering
them has the same effect. For example, we can raise the indices on
∂µ to get ∂µ.
• If an index is repeated within the same term, that indicates that

we have to sum over that index. For example,

∂µAµ =
3∑

µ=0

∂µAµ = ∂0A0 − ∂1A1 − ∂2A2 − ∂3A3.

Thus, for example, the Lorenz gauge condition can be compactly written
as ∂µAµ = 0. Similarly, the equation of motion (24.6) can be written
as ∂µFµν = 0 for each ν. The expression (24.1) becomes Aµ(fµ). The
Minkowski inner product between x, y ∈ R1,3 is xµyµ.
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25.1. Projective representations

Today, we will construct a model for electrons that also applies for
positrons and several other types of particles. Let m equal the rest mass
of the electron. Let H = L2(Xm, dλm,C2) be the space of C2-valued L2-
functions on the manifold Xm under the measure dλm. The spacetime state
of an electron is described by an element of this space. There are two basic
questions to answer before we proceed any further:

(1) What is the inner product on this space?
(2) What is the representation of the Poincaré group, P?

To answer the second question, we need to modify the fifth postulate of
quantum field theory stated in Lecture 11. Recall that this postulate states
that if a system looks like it is in state ψ ∈ H in some choice of coordinate
system, then upon changing the coordinate system by some (a,A) ∈ P,
the system looks like it is in the state U(a,A)ψ, where U is some uni-
tary representation of P in H. The representation property ensures that
U((a,A)(b, B)) = U(a,A)U(b, B), meaning that two successive changes of
coordinate system amount to one composite change, and unitarity ensures
that normalized states are sent to normalized states (conservation of prob-
ability). Now note that expectations of observables under a state ψ are
invariant under multiplication of the state by a phase α ∈ C, |α| = 1. Thus,
we do not really need U two a unitary representation; it suffices that U is
unitary and is a projective representation, meaning that

U((a,A), (b, B)) = r(a,A, b, B)U(a,A)U(b, B),

where r(a,A, b, B) ∈ C and |r(a,A, b, B)| = 1.

25.2. The representation for electrons

Let SL(2,C) be the group of 2 × 2 complex matrices of determinant 1.
For any point x ∈ R1,3, define the matrix

M(x) =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
.
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One can check the above definition provides a bijection between R1,3 and
the space of 2× 2-complex Hermitian matrices. Moreover,

detM(x) = (x, x),

where the bracket on the right is the Minkowski inner product.
Now take any A ∈ SL(2,C). Then for any x ∈ R1,3, the matrix

AM(x)A† is again a 2× 2 complex Hermitian matrix. Define κ(A)(x) to be
the unique y ∈ R1,3 such that

M(y) = AM(x)A†.

The following facts about κ are not hard to prove:

• For any A ∈ SL(2,C), κ(A) is a linear map on R1,3.
• κ is a 2-to-1 surjective homomorphism from SL(2,C) onto SO↑(1, 3).
• κ(A) = κ(B) if and only if either A = B or A = −B. (We will

henceforth write this as A = ±B.)
• κ(A†) = κ(A)†, where M † denotes the conjugate transpose of a

matrix M .

By the second property listed above, there are many maps ρ : SO↑(1, 3)→
SL(2,C) such that κ ◦ % is the identity on SO↑(1, 3). Moreover, any such %
satisfies %(AB) = ±%(A)%(B). It turns out that due to algebraic constraints,
we cannot choose % to be a homomorphism. The fourth property implies
that %(A†) = ±%(A)†.

25.3. Constructing the inner product

We assume that nature provides a % as above so that the projective
representation of SO↑(1, 3) in the space H = L2(Xm, dλm,C2) is given by

(U(a,A)ψ)(p) = ei(a,p)%(A)ψ(A−1p).

One can check that this is inded a projective representation. To prove that
the above representation is unitary, we first have to define the inner product.
We now build the inner product on H. Let p∗ = (m, 0, 0, 0) ∈ Xm denote a
distinguished element of the manifold Xm. The action of SO↑(1, 3) on Xm

is transitive, so for any p ∈ Xm there are maps taking p∗ to p. If A, B are
any such maps, then they are related by a spatial rotation:

A = BR, R =

(
1 0
0 Q

)
, Q ∈ SO(3).

In words, R fixes time and acts by rotation on the spatial variables. It
turns out that there exists a standard way to choose a unique element from
the class of all such maps taking p∗ to p. Precisely, for any p ∈ Xm there
exists a unique positive-definite Vp ∈ SL(2,C) such that κ(Vp)(p

∗) = p. The
uniqueness is provided by the positive-definite constraint. In the physics
literature, the map κ(Vp) is known as the “pure boost” that takes p∗ to p.
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With this machinery in place, we may now define the following inner
product on H:

(ψ,ϕ) :=

∫
Xm

dλm(p)ψ(p)†V −2
p ϕ(p), ψ, ϕ ∈ L2(Xm, dλm,C2).

It is not difficult to verify that H is indeed a Hilbert space under this inner
product. We now need to check that, under this inner product, the projective
representation U is unitary. To this end, we first note

(U(a,A)ψ)(p)†V −2
p (U(a,A)ϕ)(p) = ψ(A−1p)†%(A)†V −2

p %(A)ϕ(A−1p).

Integrating the right side with respect to dλm on Xm, we get

(U(a,A)ψ,U(a,A)ϕ) =

∫
Xm

dλm(p)ψ(p)†%(A)†V −2
Ap %(A)ϕ(p)

by the Lorentz invariance of dλm. It now remains to prove the following
identity.

Lemma 25.1. For any A and p,

%(A)†V −2
Ap %(A) = V −2

p .

Proof. Since κ is a homomorphism, we know

κ(V −1
Ap %(A)) = κ(V −1

Ap )κ(%(A)) = κ(VAp)
−1A.

By definition of V , we know

A−1κ(VAp)p
∗ = A−1Ap = p.

Thus, A−1κ(VAp) = κ(Vp)R for some spatial rotation R. Applying % to both
sides, we get

%(A)−1VAp = ±Vp%(R).

This, in turn, implies

%(A)†V −2
Ap %(A) = V −1

p (%(R)−1)†%(R)−1V −1
p = ±V −2

p ,

since %(R)%(R)† = ±%(RR†) = ±I. But %(A)†V −2
Ap %(A) and V −2

p are both
positive definite matrices, and therefore they must be equal. This completes
the proof. �

25.4. Fermionic Fock Space

We have now built the state space for a single electron. Because electrons
are fermionic in nature, to build the state space for n electrons we need to
build a fermonic Fock space instead of the bosonic Fock space. This is
defined as follows.
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Let H denote the Hilbert space for a single fermionic particle. Let
{ej}∞j=1 be an orthonormal basis of H. The appropriate state space for
n such particles is

H⊗nanti =

{ ∑
i1,...,in≥1

αi1,...,inei1 ⊗ . . .⊗ ein : ∀σ ∈ Sn,

αiσ(1),...,iσ(n) = sign(σ)αi1,...,in

}
.

With αi1,...,in as above, note that αi1,...,in = 0 if i1, . . . , in are not distinct
indices. Indeed, if we had a pair of repeated indices, the transposition swap-
ping their positions would preserve the index-tuple. Since transpositions are
odd, this would imply αi1,...,in = −αi1,...,in .

Like the bosonic versions, these spaces are actually basis-independent.
We now define

F0 =
∞⊕
n=0

H⊗nanti,

and let F denote the closure of F0 under the natural inner product. In the
context of electrons, we will take H = L2(Xm, dλm,C2), and the state space
for arbitrary numbers of electrons to be the fermionic Fock space of H.

We conclude with a simple example. If H = L2(R), then the fermionic
Fock space of n particles is

H⊗nanti =

{
f ∈ L2(Rn) : f(xσ(1), . . . , xσ(n)) = sign(σ)f(x1, . . . , xn),

∀x ∈ Rn, ∀σ ∈ Sn
}
.
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The Dirac field
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26.1. A basis for fermionic Fock space

Given an orthonormal basis e1, e2, . . . of H, we can form an orthonormal
basis for H⊗nanti from elements of the form

1√
n!

∑
σ∈Sn

sgn(σ)eiσ(1) ⊗ · · · ⊗ eiσ(n) ,

where i1 < i2 < · · · < in. We denote this element by |n1, n2, . . .〉, where

nj =

{
1 if j ∈ {i1, . . . , in},
0 otherwise.

We may interpret the multi-particle state |n1, . . .〉 as n particles in states
ei1 , . . . , ein . As remarked in the previous lecture, the antisymmetry forbids
occupation numbers above 1. This is the Pauli exclusion principle: two
identical fermions cannot simultaneously occupy the same state.

From the above discussion, we have that{
|n1, n2, . . .〉 : ni ∈ {0, 1} and

∑
i

ni = n

}
is an orthonormal basis for H⊗nanti. Allowing n to vary in Z≥0, we obtain an
orthonormal basis for the fermionic Fock space F :{

|n1, n2, . . .〉 : ni ∈ {0, 1} and
∑
i

ni <∞
}
.

26.2. Creation and annihilation operators on F
We begin by defining creation and annihilation operators relative to a

fixed orthonormal basis {ei} of H. For each k ≥ 1, define the creation

operator a†k as follows. Let ψ = |n1, n2, . . .〉. If nk = 1, let a†kψ = 0, where
0 denotes the zero of the vector space F , not the vacuum state. If instead
nk = 0, let

a†kψ = (−1)m |n1, . . . , nk−1, 1, nk+1, . . .〉 ,
111
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where

m := #{1 ≤ i < k : ni = 1} =
k−1∑
i=1

ni.

Remark 26.1. If ψ = |0, 0, . . .〉 is the vacuum state, a†kψ is the state
with one particle in state ek, as expected.

We also have an annihilation operator ak. If nk = 0, let akψ = 0. If
instead nk = 1, let

akψ = (−1)m |n1, . . . , nk−1, 0, nk+1, . . .〉 ,

with m as above. The sign correction (−1)m will ensure simpler formulæ in
the sequel.

We now define continuous versions of a†k and ak. We want maps A† and
A from H into L (F0,F), where L (F0,F) denotes the space of linear maps
from F0 to F . Given f ∈ H, write

f =
∞∑
k=1

αkek

and define

A†(f)ψ :=
∑
k

αka
†
kψ, A(f)ψ :=

∑
k

α∗kakψ.

Remark 26.2. Although we do not show it here, A†, A are basis inde-
pendent. That is, they do not depend on the choice of basis {ei} for H.

We can easily check the following anticommutation relations:

{ak, a†`} = δk,`1, {a†k, a
†
`} = 0, {ak, a`} = 0 for all k, ` ∈ N.

Here {A,B} := AB+BA is the anticommutator of A and B. These relations
imply

{A(ξ), A†(η)} = (ξ, η)1, {A†(ξ), A†(η)} = 0, {A(ξ), A(η)} = 0

for all ξ, η ∈ H.
Now if U is a unitary operator on H, it has a natural extension to F (by

acting on each factor in an elementary tensor). As in the bosonic case, we
have

UA(ξ)U−1 = A(Uξ) and UA†(ξ)U−1 = A†(Uξ) for all ξ ∈ H.

An analog of Wick’s theorem holds in the fermionic case, with one wrinkle:
the resulting sum is signed.
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26.3. The Dirac field

Recall that massive scalar bosons have a corresponding free field, and
photons the electromagnetic field. We now define the Dirac field associated
to electrons (and all spin-1

2 particles).
Let m denote the mass of the electron. In the last lecture, we defined the

single-electron state-space H = L2(Xm,dλm,C2), and endowed it with an
inner product based on our projective representation of the Poincaré group.
Let F denote the fermionic Fock space corresponding to H, and let e1, e2

denote the standard basis vectors of C2.
We will formally define operator-valued distributions a†(p, s) and a(p, s)

for p ∈ Xm and s ∈ {1, 2}. For ξ ∈ L2(Xm,dλm), we say

A†(ξes) =

∫
Xm

dλm(p) ξ(p)a†(p, s)

A(ξes) =

∫
Xm

dλm(p) ξ(p)∗a(p, s).

Thus formally

a†(p, s) = A†(δpes) and a(p, s) = A(δpes).

This is wholly analogous to the case of scalar bosons.
Recall that Xm is parameterized by p ∈ R3 with p = (p0,p) and p0 =

ωp :=
√
m2 + p2. We define

a†(p, s) :=
a†(p, s)√

2ωp
and a(p, s) :=

a(p, s)√
2ωp

.

Then we can check that

{a(p, s), a†(p′, s′)} = (2π)3δ(3)(p− p′)δs,s′1,

and all other anticommutators vanish. Again, these are much like the com-
mutator relations in the scalar boson case.

Now recall our distinguished element p∗ = (m, 0, 0, 0) ∈ Xm. For each
p ∈ Xm, recall that there is a unique positive-definite Vp ∈ SL(2,C) such
that

κ(Vp)p
∗ = p.

Here κ : SL(2,C) → SO↑(1, 3) denotes the double-cover defined in the pre-
vious lecture. The transformation κ(Vp) is the “pure boost” that takes p∗

to p. Define Sp ∈ GL(4,C) by

Sp :=

(
(V †p )−1 0

0 Vp

)
.
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Also, define a basis {f1, f2, f
′
1, f
′
2} of C4:

f1 :=


1
0
1
0

 , f2 :=


0
1
0
1

 , f ′1 :=


1
0
−1
0

 , f ′2 :=


0
1
0
−1

 .

Finally, define

u(p, s) := Spfs and v(p, s) := Spf
′
s. (26.1)

Let uk, vk denote the components of u, v for k ∈ {1, 2, 3, 4}.
We have defined F to be the fermionic Fock space for electrons. Con-

struct an identical copy F ′ for positrons. Then let G := F ⊗ F ′ denote the
joint electron-positron space. Let b† and b denote the analogs of a† and a
on F ′. Note that any operator C on F extends uniquely to G via

C(f ⊗ f ′) := Cf ⊗ f ′.
Operators likewise extend from F ′ to G.

For each k ∈ {1, 2, 3, 4}, we formally define an operator-valued distribu-
tion ψk on R1,3 as

ψk(x) :=
2∑
s=1

∫
R3

d3p

(2π)3

√
m√

2ωp

[
e−i(x,p)uk(p, s)a(p, s)

+ ei(x,p)vk(p, s)b
†(p, s)

]
. (26.2)

We then form the 4-tuple of operator valued distributions

ψ(x) :=


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 .

We should consider how ψ differs from the free field ϕ. Of course ψ has four
components, sums over the two spins s = 1, 2, and involves factors u and v
from the projective representation. Most importantly, however, ψ involves
a and b† rather than simply a and a†. Early attempts to treat electrons
ran into inconsistencies when using just F . Dirac had the insight to add
an extra Fock space F ′, which resolved all difficulties in the theory. Indeed,
the strength of the theory led Dirac to predict the existence of the positron
before its experimental discovery.
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Introduction to quantum electrodynamics
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27.1. Pauli and Dirac matrices

The Pauli matrices are the following four 2× 2 matrices:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 1

)
.

The Dirac matrices, defined using Pauli matrices, are the following four 4×4
matrices:

γ0 =

(
σ0 0
0 −σ0

)
, γ1 =

(
0 σ1

−σ1 0

)
, γ2 =

(
0 σ2

−σ2 0

)
, γ3 =

(
0 σ3

−σ3 0

)
.

The Dirac adjoint of any column vector x ∈ R4 is the row vector

x := x†γ0,

where x† is the conjugate transpose of x. The definition extends to the Dirac
field ψ, whose Dirac adjoint ψ is defined as

ψ := ψ†γ0.

Note that ψ is a 1× 4 row vector of operator valued distributions.

27.2. The interaction Hamiltonian for QED

Recall the fermionic Fock spaces F and F ′ for electrons and positrons,
and the projective unitary representation of the Poincaré group associated
with free evolution on these Fock spaces. Recall also the Hilbert space H =
L2(X0, dλ0,C4) with Euclidean inner product, and its bosonic Fock space
B, on which we defined the electromagnetic four-potential A = (Aµ)0≤µ≤3.
Finally, recall the unitary representation of the Poincaré group on this space
that was used to describe free evolution of photons.

Let R = B⊗F⊗F ′. The above discussion implies that there is a natural
free evolution HamiltonianH0 on this tensor product space, which represents
free evolution in each of the component spaces. Quantum electrodynamics,
which is the model of photons, electrons and positrons evolving in time by
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interacting with each other, is described by a Hamiltonian H = H0 + HI ,
where HI is the following interaction Hamiltonian:

HI = e
3∑

µ=0

∫
d3x:ψ(0,x)γµψ(0,x)Aµ(0,x):, (27.1)

where :: denotes Wick ordering. The constant e is given by

e :=
√

4πα,

where α ≈ 1/137 is a dimensionless constant known as the fine structure
constant. As always, we are working in units where ~ = c = 1.

This has the usual mathematical ambiguities. For example, HI is not
really defined as an operator on our Hilbert space R. But as before, we will
pretend that it is, and carry on with our perturbative calculations based on
the Dyson series expansion.

27.3. Perturbative calculations

We will now briefly see how to do perturbative calculations in this theory,
without going into details (which would require much more time than we
have left in this course). Consider the following scattering example. We have
two incoming electrons with momenta p1,p2 and spins s1, s2. We want to
compute the probability amplitude of getting two outgoing electrons with
momenta p3,p4 and spins s3, s4.

As always, the incoming and outgoing states can be written using the
creation operators. Specifically, we can write the incoming state as

a†(p1, s1)a†(p2, s2)|0〉
and the outgoing state as

a†(p3, s3)a†(p4, s4)|0〉.
The scattering amplitude

〈0|a(p3, s3)a(p4, s4)Sa†(p1, s1)a†(p2, s2)|0〉
is defined as usual, where S is the scattering operator.

We can do the usual Dyson expansion. Suppose that p1,p2,p3,p4 are
distinct, so that there is no zeroth order term. For the higher terms, we
need to work with a Hamiltonian density. The formula (27.1) suggests that
the Hamiltonian density should be

H(x) = e

3∑
µ=0

:ψ(x)γµψ(x)Aµ(x):.

Indeed, it can be easily verified that H satisfies the conditions required for
Hamiltonian densities discussed in Lecture 16. Since there is no coupling
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constant, the nth term in the Dyson expansion can be written as

(−i)n
n!

∫
. . .

∫
dx4

1 . . . dx
4
n〈0|a(p3, s3)a(p4, s4)

T H(x1)H(x2) . . .H(xn)a†(p1, s1)a†(p2, s2)|0〉, (27.2)

where H is the Hamiltonian density defined above.

27.4. Feynman diagrams for quantum electrodynamics

Note that the integrand in (27.2) is a linear combination of many terms
of the form

〈0|a(p3, s3)a(p4, s4)T (:ψj1(x1)ψk1(x1)Aµ1(x1): · · ·
· · · :ψjn(xn)ψkn(xn)Aµn(xn):)a†(p1, s1)a†(p2, s2)|0〉. (27.3)

As in ϕ4 theory, we can apply Wick’s theorem to (27.3). Using the fact
that we have commutation/anticommutation relations for all of the creation
and annihilation operators on B,F ,F ′, and that ψ,Aµ are defined in terms
of these creation and annihilation operators, we know (in principle) how to
compute quantities such as

〈0|T ψj(x)ψk(y)|0〉, 〈0|T Aµ(x)Aν(y)|0〉, etc.

(We will see details of this in the next lecture.) Therefore, our goal now
is to understand how to draw and analyze Feynman diagrams for quantum
electrodynamics.

As before, each operator in (27.3) is represented by a node with a single
edge hanging out. The slight difference is that the lines for the Aµ(x)’s
are wavy instead of straight. Again, as before, we simplify matters by fus-
ing the three nodes corresponding to each xi into a single node, which is
simply labeled as xi. Therefore, this node has two straight lines and one
wavy line coming out of it. Such nodes are called internal nodes. The nodes
corresponding to incoming and outgoing particles are called external nodes.
Figure 27.1 shows all nodes and lines appearing in the first order of pertur-
bation theory. Since there is an odd number of lines in the diagram shown in

Figure 27.1. Vertices and edges for one internal node and
four external nodes, occurring in the first term of the pertur-
bation series
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Figure 27.1, it is impossible to tie them without leaving at least one untied
line. Therefore the first-order term is zero.

Let us next look at the second order term. The set of all nodes and lines
for this term is shown in Figure 27.2. In this case it is in fact possible to

Figure 27.2. Vertices and edges for two internal nodes and
four external nodes, occurring in the second term of the per-
turbation series

tie up all lines so that no line remains untied. The Wick ordering in the
Hamiltonian density ensures that diagrams with self-loops at internal nodes
do not contribute. A typical example of a contributing diagram is shown in
Figure 27.3. Physically, it corresponds to two incoming electrons exchanging
a photon and scattering into two outgoing electrons.

Figure 27.3. Example of a matching of 6 lines: 4 corre-
sponding to electrons and 2 to photons

In fact, this is the only kind of diagram that contributes. The reason is
as follows. From all the considerations mentioned above, the other kind of
diagram that could have contributed are diagrams where the two incoming
electron lines meet at one internal node, and the two outgoing electron
lines meet at the other internal node. However, such diagrams give zero
contribution, because

〈0|a(p, s)ψk(x)|0〉 = 0

for any p, s, k and x, as is apparent from the definition (26.2) of ψk(x) and
the facts that 〈a(p, s)a(p′, s′)|0〉 = 0 and 〈0|a(p, s)b†(p′, s′)|0〉 = 0 for any
p, s, p′ and s′.
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28.1. The Dirac propagator

In this lecture, we will briefly outline a calculation in QED without going
into the details of all the steps. Recall that we are trying to compute the
second order term in the Dyson expansion for the scattering amplitude

〈0|a(p3, s3)a(p4, s4)Sa†(p1, s1)a†(p2, s2)|0〉 (28.1)

of getting two outgoing electrons with momenta p3, p4 and spins s3, s4,
from two incoming electrons with momenta p1, p2 and spins s1, s2. We
have argued that the only type of Feynman diagram that contributes to this
calculation are diagrams of the type shown in Figure 27.3.

To compute the contribution of any internal line in QED, we need to
calculate two kinds of propagators in QED, akin to the Feynman propagator
appearing in ϕ4 scalar field theory. Recall that the Feynman propagator for
a particle of mass m is given by

∆F,m(x) = lim
ε→0

∫
d4p

(2π)4

e−i(x,p)

−p2 +m2 − iε .

(We were writing it earlier as ∆F , but we will need to be explicit about
m here.) The Dirac propagator is a 4 × 4 array of Schwartz distributions,
defined as

∆D(x) =
3∑

µ=0

(i∂µ∆F,m(x))γµ +m∆F,m(x)I,

where γµ are the Dirac matrices defined in the previous lecture, and I is the
4 × 4 identity matrix. The Dirac propagator appears in QED calculations
in the following way. For any 1 ≤ j, k ≤ 4,

〈0|T ψj(x1)ψk(x2)|0〉 = −〈0|T ψj(x1)ψk(x2)|0〉 = −i(∆D(x1 − x2))jk.

This kind of internal line does not, however, appear in Figure 27.3, but do
appear in higher orders of perturbation theory.
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28.2. The photon propagator

The photon propagator ∆µν , for 0 ≤ µ, ν ≤ 3, is defined as

∆µν(x) = −ηµν∆F,0(x),

where ∆F,0 is the Feynman propagator with m = 0, and as usual,

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

The photon propagator appears in QED calculations in the following way.
For any 0 ≤ µ, ν ≤ 3,

〈0|T Aµ(x1)Aν(x2)|0〉 = −i∆µν(x1 − x2).

28.3. Second order term in electron scattering

The Dirac propagator and the photon propagator allow us to calculate
the contributions of the internal lines in Feynman diagrams for QED. Con-
tributions from external lines, which are of the form 〈0|ψk(x)a†(p, s)|0〉, etc.,
can be calculated using commutation relations for the creation and annihi-
lation operators. Without going into details, let us just mention that the
end result of such calculations show that the second order term in the Dyson
expansion of (28.1) is

3∑
µ,ν=0

im2e2√
16ωp1

ωp2
ωp3

ωp4

u(p3, s3)γµu(p1, s1)
ηµν

(p3 − p1)2
u(p4, s4)γνu(p2, s2)

+ similar terms,

where u(p, s) is the Dirac adjoint of the vector u(p, s) defined in (26.1), and
the “similar terms” are obtained by exchanging p3 with p4, and p1 with p2.

28.4. The non-relativistic limit

Let us now consider the non-relativistic limit of the scattering amplitude
computed above, that is, where |pi| � 1 for each i. In this situation, we
have ωpi ≈ m for each i. We also have

(p3 − p1)2 = (p0
3 − p0

1)2 − (p3 − p2)2,

and

p0
i =

√
m2 + p2

i ≈ m+
p2
i

m
,

which implies that

(p3 − p1)2 = −(p3 − p1)2(1 + o(1)).

Lastly,

u(p, s)γµu(p′, s′) ≈ u(0, s)γµu(0, s′),
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and the right side, when summed over µ, gives 2δs,s′ . Therefore in the
non-relativistic limit, the second order term in the scattering amplitude is
approximately equal to

−ie2

(p3 − p1)2
δs1,s3δs2,s4(2π)4δ(4)(p3 + p4 − p1 − p2) + similar terms.

The function V : R3 → R whose Fourier transform is

V̂ (p) =
1

p2

is the function

V (x) =
1

4π|x| .
This indicates that if we assumed a non-relativistic quantum mechanical
model for electrons and used the Coulomb potential to model the repulsion
between electrons, we would have ended up with the same scattering ampli-
tude. Thus, the Coulomb potential arises naturally in the non-relativistic
limit of QED.

28.5. Anomalous magnetic moment of the electron

The anomalous magnetic moment of the electron is a dimensionless
quantity, predicted to be equal to 1 by non-relativistic quantum mechanics
(~ = c = 1). The experimental value deviates slightly from this prediction.
Currently, the experimentally determined value, up to ten places of decimal,
is the following:

1.001 159 652 180 73(±28).

It is one of the great successes of QED that it gives a much more accurate
prediction for this quantity. The theoretical value, when calculated using
second order perturbation theory, already gives

1.001 161 4.

However, when one goes to fifth order of perturbation theory, one gets

1.001 159 652 181 643(±764),

which is a truly astonishing match with experiment, unparalleled in all of
science.
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29.1. Interacting quantum fields

Until now, we have only worked with free fields, and scattering ampli-
tudes computed using free fields. There are, however, important objects
known as interacting quantum fields that are more complicated than free
fields. Let us now see the simplest example of an interacting quantum field.
Recall ϕ4 theory. We have the Hilbert space H = L2(Xm, dλm) and the
scalar free field ϕ. In this lecture, we will denote the free field by ϕfree, to
distinguish it from the interacting field ϕ that we are going to define below.

Recall the Hamiltonian H = H0 + gHI , where H0 is the Hamiltonian of
free evolution, and

HI =
1

4!

∫
d3x:ϕfree(0,x)4:.

The interacting field ϕ defined by the Hamiltonian H is

ϕ(t,x) := eitHϕfree(0,x)e−itH .

In particular, ϕ(0,x) = ϕfree(0,x). In other words, the interacting field
starts off as ϕfree at time zero, but then evolves according to the Hamiltonian
H instead of H0 (in the Heisenberg picture of evolution of operators). In
contrast, the free field evolves as

ϕfree(t,x) = eitH0ϕfree(0,x)e−itH0 ,

a fact that we have noted before.
Note that the definition of ϕ does not make mathematical sense, since

H is not a mathematically well-defined operator on H. The rigorous defi-
nition of interacting quantum fields is one of the major open questions in
mathematical physics. We will discuss one approach to the solution of this
question below.

29.2. Green’s functions

Suppose that H is indeed a well-define operator (possibly on a space that
is different than H), and that it has a unique ground state (i.e. an eigenstate
with minimum eigenvalue) Ω. This is called the vacuum state of the theory.
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Note that Ω 6= |0〉. The Green’s functions (or Schwinger functions) for the
theory are defined, for each n, as

G(x1, . . . , xn) = 〈Ω|T ϕ(x1) · · ·ϕ(xn)|Ω〉 (29.1)

where x1, . . . , xn ∈ R1,3.
Typically, G is expected to be a distribution rather than a function.

It turns out that the Green’s functions contain much more information
than scattering amplitudes. In particular, scattering amplitudes can be
recovered from the Green’s functions using the LSZ (Lehmann–Symanzik–
Zimmermann) formula. The Green’s functions for an interacting theory are
computed using the free field and the Gell-Mann–Low theorem.

29.3. The Wightman axioms

The Wightman axioms give a framework for rigorously defining inter-
acting quantum field theories. The axioms are designed to ensure that there
are no physical inconsistencies. Let us only consider the axioms for bosonic
scalar fields for now.

Axiom 1. There exists a Hilbert space H whose elements represent the
possible states of the quantum system under consideration, and a unitary
representation U of P in H. (We do not need “projective” because we are
dealing with scalar fields.) There is one further assumption about U , and it
needs a bit of preparation to state. Note that (U(a, 1))a∈R1,3 is a commut-
ing family of unitary operators. Therefore by the spectral theorem, we have
that

U(a, 1) =

∫
R1,3

dE(p)ei(a,p),

where E is a projection-valued measure on R1,3. Let

L := {p ∈ R1,3 : p0 ≥ |p|}
be the “forward light cone”. The additional assumption on U is that

E(A) = 0 whenever A ∩ L = ∅.
This assumption is required to ensure that there are no particles with “neg-
ative masses” in the theory. There is a simple way to check (29.3). The
condition is satisfied if and only if for any ξ, η ∈ H and any f ∈ S (R1,3),

such that the support of f̂ does not intersect L, we have∫
d4af(a)(ξ, U(a, 1)η) = 0.

Axiom 2. There exists a dense subspace D of H and a linear map

ϕ : S (R4)→ {unbounded operators on H}
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such that for f ∈ S (R4)}, we have that ϕ(f) is defined on D and ϕ(f)(D) ⊂
D. Moreover, we assume that for any ξ, η ∈ D,

(ϕ(f∗)ξ, η) = (ξ, ϕ(f)η).

In particular if f is real-valued, then ϕ(f) is a symmetric operator on D.

Axiom 3. For any ξ, η ∈ D, f 7→ (ξ, ϕ(f)η) is a tempered distribution.

Axiom 4. For any (a,A) ∈ P,

U(a,A)ϕ(f)U(a,A)−1 = ϕ(V (a,A)f),

where

V (a,A)f(x) = f(A−1(x− a)).

This is the axiom of Lorentz invariance, designed to ensure compatibility
with special relativity.

Axiom 5. If the supports of f, g ∈ S (R4) are “spacelike separated”, then

[φ(f), φ(g)] = 0.

(Two points x, y ∈ R1,3 are called spacelike separated if (x− y)2 < 0. Two
sets are spacelike separated if any point in one spacelike separated from
any point in the other.) This is the locality axiom, designed to ensure
compatibility with the stipulation of special relativity that a signal cannot
travel faster than the speed of light.

Axiom 6. There exists Ω ∈ D such that U(a, 1)Ω = Ω for any a, and it is
the unique element satisfying this condition. (One can actually deduce from
the axioms that U(a,A)Ω = Ω for any (a,A) ∈ P.) This is the axiom that
ensures the existence and uniqueness of the vacuum state.

Axiom 7. The closed linear span of elements like ϕ(f1) · · ·ϕ(fn)Ω for n
and f1, . . . , fn arbitrary, is the Hilbert space H. This axiom is designed to
ensure that the field ϕ is “rich enough” to generate all possible states.

It can be verified that the scalar free field satisfies all of the above axioms.
A quantum field theory ϕ is called interacting if it is not the free field. The
Wightman axioms have analogs in R1,1 and R1,2, where interacting fields
satisfying these axioms have been constructed. Unfortunately, no one has
been able to construct an interacting quantum field theory in R1,3 that
satisfies the Wightman axioms.

29.4. The probabilistic approach

There is a probabilistic approach to the construction of interacting quan-
tum field theories that satisfy the Wightman axioms. Suppose that we start
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with the Green’s function G(x1, . . . , xn) = G((t1,x1), . . . , (tnxn)) for a hy-
pothetical quantum field theory, and analytically analytically continue it in
time to get

S(x1, . . . , xn) := G((it1,x1), . . . , (itn,xn)).

From the path integral heuristic (which we have not discussed), it is expected
that S is the n-point correlation function of a random field:

S(x1, . . . , xn) = E(ψ(x1) · · ·ψ(xn)),

where ψ is a random field on R1,3. Usually the field ψ is so rough that S
is still a distribution rather than a function. The correct random field can
be identified using the Lagrangian of the theory (again, which we have not
discussed).

Once the guess about the random field has been made, one can try to
verify that it satisfies a set of axioms known as the Osterwalder–Schrader
axioms. If these axioms are satisfied by ψ, then there exists a “reconstruction
theorem” that reconstructs the quantum field whose Green’s function G is
the analytic continuation of S in time. Here reconstructing the quantum
field means constructing a quantum field theory satisfying the Wightman
axioms.

Using this approach, interacting scalar ϕ4 quantum field theories have
been constructed on R1,1 and R1,2, but not yet on R1,3.

Open problem 29.1. Construct an interacting scalar quantum field
theory on R1,3 that satisfies the Wightman axioms.
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