
S O U R AV C H AT T E R J E E

L E C T U R E N O T E S F O R
M AT H 1 5 1





Contents

Basic concepts 7

Experiments, outcomes, events and probabilities 7

The fundamental principle of counting 8

Example: Back to coin tossing 10

Example: The birthday paradox 10

Operations with events 11

Example: The secretary problem 12

Disjoint events 13

Conditional probability 14

The law of total probability 14

Bayes rule 15

Independent events 16

Discrete random variables 19

Random variables as functions 19

Probability mass function 20

Independence 20

Bernoulli and binomial random variables 21

Infinite sequence of coin tosses 22

Geometric random variables 23

Poisson random variables 23

Joint probability mass function 25

Conditional probability mass function 27



4

Expectation and variance 29

Expected value 29

Expectation of a function of random variables 31

Linearity of expectation 31

The method of indicators 33

Variance 34

Covariance 36

Expectation of a product of independent random variables 37

The method of indicators for variance 39

Laws of large numbers 41

Elementary inequalities 41

Markov’s inequality 42

Chebyshev’s inequality 43

Convergence in probability 44

The weak law of large numbers 45

Two applications of the weak law 46

Example: Number of empty boxes 46

Example: Number of head runs 47

Example: The coupon collector’s problem 47

Continuous random variables 51

Probability density function 51

Construction of continuous random variables 52

Cumulative distribution function 54

Change of variable formula 55

Joint probability density function 56

Independence 58

Conditional probability density function 59

Multivariate change of variable formula 60

Applications of the change of variable formula 61



5

Example: Sum of two independent centered normals 63

Example: Ratio of two independent centered normals 64

Example: Gamma random variables 64

More about continuous random variables 67

Expected value 67

Properties of expectation 68

Variance 69

Inequalities and laws of large numbers 71

The tail integral formula for expectation 71

Mean vector and covariance matrix 72

Normal random vectors 72

The central limit theorem 77

Convergence in distribution 77

Statement of the central limit theorem 78

Preparation for the proof 79

The Lindeberg method 81

The multivariate central limit theorem 83

Example: Number of points in a region 83

Central limit theorem for sums of dependent random variables 84

Example: Number of head runs 89

More about variance and covariance 91

The Cauchy–Schwarz inequality 91

Correlation 92

Bivariate normal distribution 92

The Efron–Stein inequality 93

Example: The traveling salesman problem 95





Basic concepts

Experiments, outcomes, events and probabilities

An experiment has many possible outcomes. The set of all outcomes
is called the sample space. For example, if the experiment is ‘roll a
die’, the possible outcomes are 1, 2, 3, 4, 5 and 6. The sample space
for this experiment is Ω = {1, . . . , 6}.

Sample spaces may be finite or infinite. For now, let us consider
only finite sample spaces. If the outcome of the experiment is sup-
posed to be ‘random’, we assign a probability1 P(ω) to each out-

1 There is a lot of philosophical debate
about the meaning of ‘probability’. The
most intuitive notion is that P(ω) is
the fraction of times that ω will occur
if the experiment is repeated many
times. This is the frequentist view
of probability. The problem with this
notion is that many experiments are not
repeatable. (For example, what is the
probability that a certain candidate will
win an election?) Sometimes people
think of probabilities as beliefs that are
updated according to some set of rules
as new knowledge is acquired. This is
the Bayesian approach. For simplicity,
we will adopt the frequentist viewpoint.

come ω in the sample space Ω. The constraints are that P(ω) has to
be nonnegative for each ω, and

∑
ω∈Ω

P(ω) = 1.

In the die-rolling example, if the die is a fair die, it is reasonable2 to

2 One should view this as a kind of
scientific theory. You cannot really
‘prove’ that the probability of each
outcome is 1/6. But if you adopt
the frequentist viewpoint, and you
have an actual fair die in your hand,
you can roll it many times and verify
that each outcome indeed happens
approximately one-sixth of the times,
and this approximation becomes more
and more accurate if the experiment
is repeated more and more times.
The model is the validated by the
experiments.

assign P(ω) = 1/6 to each outcome ω.
An event is a set of outcomes. For example, in the above die-

rolling example, the event ‘The die turns up at least 4’ is the set
{4, 5, 6}. The probability of an event is the sum of the probabilities
of the outcomes constituting that event3. For instance, if we name the

3 So, what is the meaning of the prob-
ability of an event according to the
frequentist viewpoint?

above event A, then

P(A) = P(4) + P(5) + P(6) =
1
2

.

As a slightly more complicated experiment, consider rolling two fair
dice. The sample space is the set of all ordered pairs (i, j) of numbers
between 1 and 6, that is,

Ω = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (2, 6), . . . , (6, 1), . . . , (6, 6)}.

Again, a reasonable model is P(ω) = 1/36 for each ω. Suppose we
let A be the event ‘The sum of the two numbers is 5’. Set theoreti-
cally,

A = {(1, 4), (2, 3), (3, 2), (4, 1)}.

Thus,

P(A) =
4

36
=

1
9

.
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On the other hand, the chance of getting the sum to be equal to 12 is
1/36, since that event contains only one outcome.

For our next experiment, consider tossing a fair coin three times.
The sample space is

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

Since there are 8 outcomes, and all of them are presumably equally
likely4, we can assign P(ω) = 1/8 to each ω ∈ Ω. Let A be the event4 You are, of course, free to disbelieve

this. You may say that after two heads,
it is more likely to get a tail than a
head; that is, HHT is more likely than
HHH. Such a model, however, will
not give correct predictions for a real
experiment with a real coin. This is
sometimes called the gambler’s fallacy. It
is not a fallacy in the mathematical or
logical sense; it is a fallacy only because
it leads to wrong predictions in the real
world.

‘We get at least two heads’. Set theoretically,

A = {HHH, HHT, HTH, THH},

and so P(A) = 4/8 = 1/2.
Finally, let us generalize the above experiment to a sequence of n

tosses of a fair coin. Obviously, the sample space Ω is the set of all
sequences of heads and tails of length n. The first observation is that
the size of Ω, which we will denote by |Ω|, is 2n. To see this, observe
that a sequence of length n is obtained by appending either H or
T to the end of a sequence of length n − 1. Therefore the number
sequences is multiplied by 2 each time we add a toss. Thus, we may
assign P(ω) = 2−n to each outcome ω.

Take any k between 0 and n. What is the probability of the event
A = ‘We get exactly k heads’? Clearly,

P(A) =
number of sequences with exactly k heads

2n .

But the number in the numerator is not so easy to calculate, unless
you know how to do it. This is what we will do in the next section:
Learn to count!

The fundamental principle of counting

Suppose you have to do k tasks. Suppose that the first task can be
done in n1 ways. Suppose that after the first task has been executed,
no matter how you have done it, the second task can be done in n2

ways. Suppose that after the first two tasks have been carried out,
no matter how, there are n3 ways of doing the third task. And so on.
Then the number of ways of doing all of the tasks is n1n2 · · · nk. This is
known as the fundamental principle of counting5.

5 This is not a theorem; there is no
‘proof’. It is one of those things that we
consider as obvious or self-evident. As
a very simple example, suppose that
you have to choose one of two routes
to come to class, and on each route,
there are three breakfast places from
which you can pick up breakfast. You
have two tasks: (1) Choose a route. (2)
Choose a breakfast place. The first task
can be done in 2 ways. Having done
the first task, there are 3 ways of doing
the second — even though there are 6
breakfast places in all. So here n1 = 2
and n2 = 3. Convince yourself that
the total number of ways of doing both
tasks is n1n2 = 6.

Let us now work out three very important applications of this
principle. First, suppose that you have n cards, marked 1, 2, . . . , n.
The task is that you have to arrange those cards as a deck. What is
the number of ways of doing this?

This task can be broken up into the following sequence of n tasks:
Put down the first card, then place a second card on top of it, and
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then put a third one on top of the second, and so on. Clearly, the first
task can be done in n ways, because we are free to choose any one of
the n cards to place at the bottom of the deck. Having done the first
task, we are left with n − 1 ways of doing the second. Continuing
in this way, and applying the fundamental principle of counting, we
deduce that the total number of ways of arranging the n cards in a
deck is

n(n− 1)(n− 2) · · · 1.

This number is denoted by n! (and pronounced n-factorial). This is
the number of ways of arranging the number 1, 2, . . . , n in a sequence.
Any such arrangement is known as a permutation of 1, . . . , n. The set
of all such permutations is usually denoted by Sn. For convenience,
we define 0! = 1.

Our next example is the problem of seating k guests in n chairs,
where k is between 1 and n. The first guest can be seated in n ways.
Having seated the first guest, the second guest can be seated in n− 1
ways, and so on. Therefore the total number of ways of seating k
guests in n chairs is

n(n− 1) · · · (n− k + 1)︸ ︷︷ ︸
k terms

=
n!

(n− k)!
. (1)

Note that this makes sense even if k = 0, since the right side is 1.
Next, consider the problem of selecting a set of k chairs out of n.

Note that this is different than the previous example in that we are
not considering the order in which the chairs are picked6. What is the 6 For example, if k = 2, and we pick

chair 2 first and then chair 3, this would
be considered to be the same as picking
chair 3 first and then chair 2. We will
not count these as different ways of
doing the task of picking a set of 2
chairs out of n.

number of ways of doing this task?
Let us call it x. Now consider the task from the previous example:

Seat k guests in n chairs. That task can be broken up into a sequence
of two tasks — first, pick a set of k chairs out of n, and then, pick an
arrangement of those k chairs to seat the k guests. The first task can
be done in x ways. Having done the first task, the second task is the
same as picking a permutation of 1, . . . , k, which, as we have learnt,
can be done in k! ways. Thus, k guests can be seated in n chairs in xk!
ways. But we already know that the number of ways is given by the
formula (1). Therefore

xk! =
n!

(n− k)!
,

which gives

x =
n!

k!(n− k)!
=

n(n− 1) · · · (n− k + 1)
k!

.

This number is a binomial coefficient, usually denoted by(
n
k

)
.
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By the convention 0! = 1, it follows that(
n
0

)
=

(
n
n

)
= 1.

The name ‘binomial coefficient’ comes from the binomial theorem,
which says that77 The proof is easy: Just note that

when you expand (a + b)n using
the distributive law, the number of
terms containing k a’s and n − k b’s
is the same as the number of ways of
choosing k locations out of n, which is
(n

k). Any such term contributes akbn−k .

(a + b)n =
n

∑
k=0

(
n
k

)
akbn−k.

Example: Back to coin tossing

Recall the experiment where we were tossing a fair coin n times.
How many outcomes have exactly k heads? Note that this is the
same as the number of ways of choosing a set of k chairs out of n,
since specifying the locations of the heads completely determines the
outcome. Thus, there are (n

k) sequences of n tosses which have exactly
k heads. Consequently, the probability of getting exactly k heads is(

n
k

)
2−n.

Example: The birthday paradox

In a class of n students, what is the chance that there is at least one
pair of students with the same birthday (that is, day and month, not
year)? For simplicity, let us ignore February 29 and assume that there
are 365 days in a year. The sample space Ω is the set of all sequences
of length n where each member of the sequence is a number between
1 and 365. By the fundamental principle of counting, |Ω| = 365n. Let
us assume that model that all of the sequences are equally likely8.8 It is not clear that this model is fully

accurate. For example, births may be
less likely on national holidays due to
the unavailability of medical staff. But
we will go with it.

Again, by the fundamental principle of counting, the number of
ways that all n birthdays can be different from each other is

365 · 364 · 363 · · · (365− n + 1).

Note that this holds even if n > 365, since introduces a 0 in the above
product. Thus, the number of sequences with at least one pair of
duplicated birthdays is 365n minus the above product, which means
that the probability of this event is

1− 365 · 364 · 363 · · · (365− n + 1)
365n .

The actual values of this probability are surprising, which is why it
is called a paradox. For n as small as 23, this is approximately 0.51.
For n = 40, it is bigger than 0.89. So in a class of size 40, there is near
certainty that there is a pair of students with the same birthday.
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The reason why this feels so surprising is that very few of us know
anyone with the same birthday as ourselves, even though each of us
knows a lot of people. The resolution of this apparent contradiction
is that for a given person, who knows the birthdays of n acquain-
tances, the probability that this person shares his or her birthday with
one of these n acquaintances is

1− 364n

365n .

(Prove this.) For n = 40, this probability is less than 0.11. The small-
est n for which this probability exceeds 0.5 is 253. Very few of us
are aware of the birthdays of more than 30 or 40 acquaintances. This
shows why most of us do not know of anyone with the same birth-
day as their own selves.

Operations with events

Since an event is just a subset of the sample space, we can perform
set theoretic operations with events. If A is an event, the complement
of A, denoted by Ac, is the set Ω \ A. Since

P(A) = ∑
ω∈A

P(ω),

and P(Ω) = 1, it follows that

P(Ac) = 1− P(A).

The union of two events A and B is the set A ∪ B, which consists
of all outcomes that are either in A or in B or in both A and B. In
probability theory, A ∪ B is often referred to as ‘A or B’.

The intersection of A and B, denoted by A ∩ B, is the set of all
outcomes that belong to both A and B. We often call this event ‘A
and B’.

Now suppose we add up P(A) and P(B). Then we are adding
up P(ω) for each ω that belongs to the union of A and B, but we
are double counting those in the intersection. So if we subtract off
P(A ∩ B) from this sum, we end up with P(A ∪ B). In other words,

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

This is known as the inclusion-exclusion formula.
What if we have three events A, B and C? Writing A ∪ B ∪ C as the

union of A ∪ B and C, we can apply the inclusion-exclusion formula
to get

P(A ∪ B ∪ C) = P(A ∪ B) + P(C)− P((A ∪ B) ∩ C)

= P(A) + P(B) + P(C)− P(A ∩ B)− P((A ∪ B) ∩ C).
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By the distributive law for unions and intersections9,9 Convince yourself using Venn dia-
grams.

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C).

Therefore again by the inclusion-exclusion formula,

P((A ∪ B) ∩ C) = P(A ∩ C) + P(B ∩ C)− P((A ∩ C) ∩ (B ∩ C))

= P(A ∩ C) + P(B ∩ C)− P(A ∩ B ∩ C).

Combining the steps, we get

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)

− P(A ∩ B)− P(A ∩ C)− P(B ∩ C)

+ P(A ∩ B ∩ C).

This is the inclusion-exclusion formula for three events. We can
clearly see a pattern emerging here. In fact, there is a generalized
inclusion-exclusion formula for the probability of the union of n
events:

P(A1 ∪ · · · ∪ An) = ∑ P(Ai)−∑ P(Ai ∩ Aj)

+ ∑ P(Ai ∩ Aj ∩ Ak)− · · ·
+ (−1)n−1P(A1 ∩ · · · ∩ An),

where there is no double counting in any of the sums10. Note that10 Try to prove this by induction; that
is, assume that the formula is true for
n− 1 events, and the prove it for n, the
same way as we extended from 2 to 3
events.

there are (n
r) terms in the rth sum, since each term corresponds to the

choice of a set of r indices out of n. We will use this observation later.

Example: The secretary problem

Suppose that a secretary needs to insert n letters into n marked en-
velopes. But due to a mishap, the letters get all mixed up, and the
secretary just inserts the letters randomly into envelopes. The secre-
tary problem is the problem of computing the chance the none of the
letters go into the correct envelope11.11 There is also another very different

problem in probability that goes by
the name of ‘secretary problem’. See
Wikipedia.

A great surprise is that for large n, this probability is neither close
to 0 nor close to 1. In fact, as n → ∞, this probability converges to
1/e, which is approximately 0.37. We will now prove this.

Let Ai be the event that letter i goes into the correct envelope.
Then A1 ∪ · · · ∪ An is the event that at least one letter goes into
the correct envelope. We will now apply the generalized inclusion-
exclusion formula to calculate the probability of this event.

Take any r between 1 and n. Then A1 ∩ · · · ∩ Ar is the event that
letters 1, . . . , r all go into the correct envelopes. If this event happens,
then the number of ways of inserting the remaining n− r letters into
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the remaining n− r envelopes is (n− r)!. Since the total number of
ways of inserting letters into envelopes in n!, this shows that

P(A1 ∩ · · · ∩ Ar) =
(n− r)!

n!
.

Now take any distinct i1, . . . , ir between 1 and n. Clearly, the same
argument shows that P(Ai1 ∩ · · · ∩ Air ) is also equal to (n− r)!/n!.
Thus, each term in the rth sum of the inclusion-exclusion formula
equals (n− r)!/n!. Since there are (n

r) terms, the rth sum equals(
n
r

)
(n− r)!

n!
=

n!
r!(n− r)!

(n− r)!
n!

=
1
r!

.

Therefore,

P(A1 ∪ · · · ∪ An) =
1
1!
− 1

2!
+

1
3!
− · · ·+ (−1)n−1 1

n!
.

The probability that no letter goes into the correct envelope is 1 mi-
nus the above quantity, which converges12 to e−1 as n→ ∞. 12 The convergence is very fast. Even

for n = 5, it is 0.367 to three places of
decimal, whereas e−1 = 0.368 to three
places of decimal.Disjoint events

Two events A and B are called disjoint or mutually exclusive if
A ∩ B = ∅, that is, if there is no outcome that is in both A and B.
Yet another way to put it is that the events A and B cannot happen
simultaneously. A sequence of events A1, . . . , An is called disjoint or
mutually exclusive if Ai ∩ Aj = ∅ for any i 6= j. That is, if no two
events can happen simultaneously. The most important property of
disjoint events is that if A1, . . . , An are disjoint, then

P(A1 ∪ · · · ∪ An) =
n

∑
i=1

P(Ai).

This is an immediate consequence of the inclusion-exclusion formula,
but it also follows easily from the definition of the probability of an
event as the sum of the probabilities of outcomes, since no outcome
can belong to two of the above events.

A collection of events A1, . . . , An is called a partition of the sample
space if the events are disjoint and their union is Ω.

Proposition 1. If A1, . . . , An is a partition of Ω, then for any event B,

P(B) =
n

∑
i=1

P(B ∩ Ai).

Proof. First, note that the events B ∩ A1, . . . , B ∩ An are disjoint. This
follows easily from the fact that A1, . . . , An are disjoint. Next, we
claim that

B = (B ∩ A1) ∪ · · · ∪ (B ∩ An). (2)
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To prove this, we will now show that the two sets displayed above
both contain the other13. First, take any ω ∈ B. Since A1, . . . , An is a13 This is the standard way of showing

that two sets are equal. partition of Ω, ω must be in some Ai. Then ω ∈ B ∩ Ai, and hence

ω ∈ (B ∩ A1) ∪ · · · ∪ (B ∩ An).

This proves that B ⊆ (B ∩ A1) ∪ · · · ∪ (B ∩ An). Conversely, take any
ω ∈ (B ∩ A1) ∪ · · · ∪ (B ∩ An). Then ω ∈ B ∩ Ai for some i, and
so, ω ∈ B. Thus, B ⊇ (B ∩ A1) ∪ · · · ∪ (B ∩ An). This concludes the
proof of (2). Combining this with the fact that B ∩ A1, . . . , B ∩ An are
disjoint completes the proof.

The following corollary is often useful.

Corollary 1. For any two events A and B,

P(B) = P(B ∩ A) + P(B ∩ Ac).

Proof. Simply observe that A, Ac is a partition of Ω, and apply
Proposition 1.

Conditional probability

Let A and B be two events, with P(A) > 0. The conditional proba-
bility of B given that A has happened is defined as1414 From the frequentist viewpoint, this

formula is justified as follows. Suppose
that the experiment is repeated many
times. Then P(A) is the fraction of
times that A happened, and P(A ∩ B)
is the fraction of times that A and B
both happened.Therefore P(B|A) is the
fraction of times that B happened among
those instances where A happened.

P(B|A) =
P(B ∩ A)

P(A)
.

When P(A) = 0, we leave it undefined15.

15 Actually, conditional probability given
A can be defined even if P(A) = 0, and
that is an important matter. We will talk
about it later.

As an example, consider a single roll of a die. If A is the event
that the number that turns up is at least 4, and B is the event that the
number is 6, then

P(B|A) =
1/6
1/2

=
1
3

.

Observe that for any two events A and B, P(A ∩ B) = P(A)P(B|A).
This holds even if P(A) = 0, irrespective of how we define P(B|A) in
that situation.

The law of total probability

The following proposition is sometimes called the law of total proba-
bility.

Proposition 2 (Law of total probability). Let A1, . . . , An be a partition
of Ω. Then for any event B,

P(B) =
n

∑
i=1

P(B|Ai)P(Ai).
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Proof. Apply Proposition 1, and use P(B ∩ Ai) = P(B|Ai)P(Ai).

Considering the partition A, Ac, we get the following corollary.

Corollary 2. For any two events A and B,

P(B) = P(B|A)P(A) + P(B|Ac)P(Ac).

Bayes rule

Let A and B be two events with P(A) > 0 and P(B) > 0. The follow-
ing formula is an easy consequence of the definition of conditional
probability:

P(A|B) = P(B|A)P(A)

P(B)
.

This is known as Bayes rule.
Sometimes, Bayes rule can lead to surprising consequences. Con-

sider the following example. Suppose that a rare disease afflicts 0.5%
of the population. Suppose that there is a diagnostic test which is
99% accurate, which means that it gives the correct diagnosis with
probability 0.99 if a person has the disease and also if a person does
not have the disease. Now, if a random person tests positive, what is
the conditional probability that the person has the disease?

We proceed systematically, as follows. Let D be the event that the
person has the disease16. Let + denote the event that the person tests 16 Try to set this up as an experiment

with a sample space, probability, etc.positive. We are interested in evaluating P(D|+). By Bayes rule,

P(D|+) =
P(+|D)P(D)

P(+)
.

By the law of total probability,

P(+) = P(+|D)P(D) + P(+|Dc)P(Dc).

By the given information, we know that P(D) = 0.005, P(+|D) =

0.99 and P(+|Dc) = 0.01. Thus,

P(D|+) =
P(+|D)P(D)

P(+|D)P(D) + P(+|Dc)P(Dc)

=
0.99× 0.005

0.99× 0.005 + 0.01× 0.995
= 0.3322148.

Thus, a person who tests positive is only about 33% likely to have the
disease17.

17 This can be demystified as follows.
Suppose that 1000 randomly chosen
people are tested. Since the disease
afflicts 0.5% of the population, we may
expect that 5 people out of these 1000
actually have the disease. The test
will almost certainly diagnose these 5
people correctly. Among the remaining
995, approximately 1% — about 10
people — are misdiagnosed by the
test. Thus, 15 people will get positive
results but only 5 of them really have
the disease.
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Independent events

An event B is said to be independent of an event A if the information
that A has happened does not change the likelihood of B; that is,
P(B|A) = P(B). This can be rewritten as P(B ∩ A) = P(B)P(A). But
note that this can again be rewritten as P(A|B) = P(A). Therefore,
if B is independent of A, then A is independent of B. This slightly
strange fact shows that independence is a symmetric relation: We say
that two events A and B are independent if

P(A ∩ B) = P(A)P(B).

For example, suppose we toss a fair coin twice. Let A be the event
that the first toss turns up heads and let B be the event that the sec-
ond toss turns up heads. Then P(A) = P(B) = 2/4 = 1/2, and
P(A ∩ B) = 1/4 = P(A)P(B). Thus, A and B are independent events.

On the other hand, suppose a fair coin is tossed three times. Let
A be the event that the first two tosses are heads, and let B be the
event that the last two tosses are tails. Then P(A) = P(B) = 2/8 =

1/4, and P(A ∩ B) = 1/8 6= P(A)P(B). Thus, A and B are not
independent.

The concept of independence extends to more than two events.
Events A1, . . . , An are called independent (or mutually indepen-
dent) if for any k between 1 and n, and any distinct indices i1, . . . , ik

between 1 and n,

P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik ) = P(Ai1)P(Ai2) · · · P(Aik ).

This is equivalent to saying that for any distinct i1, . . . , ik, j1, . . . , jl ,

P(Aj1 ∩ · · · ∩ Ajl |Ai1 ∩ · · · ∩ Aik ) = P(Aj1 ∩ · · · ∩ Ajl ).

For an example of a sequence of independent events, consider n
tosses of a fair coin. Let Ai be the event that toss i turns up heads.
Then A1, . . . , An are independent events, as shown by the follow-
ing argument. Take any distinct i1, . . . , ik. The number of outcomes
where tosses i1, . . . , ik all turn up heads is 2n−k, because the remain-
ing tosses can be determined in 2n−k ways (by the fundamental prin-
ciple of counting). Thus,

P(Ai1 ∩ · · · ∩ Aik ) =
2n−k

2n = 2−k.

Applying this with k = 1, we get that P(Ai) = 1/2 for each i. Thus,

P(Ai1 ∩ · · · ∩ Aik ) = P(Ai1) · · · P(Aik ),

proving the independence of A1, . . . , An.
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There is also a different concept called pairwise independence.
Events A1, . . . , An are called pairwise independent if P(Ai ∩ Aj) =

P(Ai)P(Aj) for any i 6= j. If the events are independent, then they
are automatically pairwise independent. Surprisingly, the converse
is not true, as shown by the following counterexample. Toss a fair
coin twice. Let A be the event that the first toss turns up heads. Let B
be the event that the second toss turns up heads. Let C be the event
that either both tosses are heads or both tosses are tails. Then it is
easy to check that P(A) = P(B) = P(C) = 1/2 and P(A ∩ B) =

P(A ∩ C) = P(B ∩ C) = 1/4, which means that A, B and C are
pairwise independent. However,

P(A ∩ B ∩ C) =
1
4
6= P(A)P(B)P(C),

which shows that the three events are not mutually independent.
Independence of A and B implies that Ac and B are independent,

as are Ac and Bc, and A and Bc. Let us only show this for Ac an B:

P(Ac ∩ B) = P(B)− P(A ∩ B) (by Corollary 1)

= P(B)− P(A)P(B) (by independence of A and B)

= (1− P(A))P(B) = P(Ac)P(B).

More generally, if A1, . . . , An are independent events, and B1, . . . , Bn

are events such that each Bi is either Ai or Ac
i , then B1, . . . , Bn are also

independent (prove this).





Discrete random variables

Random variables as functions

We will continue with finite sample spaces for the time being. Let Ω
be a finite sample space. A function X : Ω → R is called a random
variable. In other words, a random variable assigns a number to each
outcome. The numbers need not be all different.

For example, consider the experiment of rolling a fair die twice.
We can define a number of random variables related to this experi-
ment. For example, we can define X to be the number that turns up
on the first roll, Y to be number that turns up on the second roll, and
Z to be the sum of the two numbers. Thus, for instance, if ω = (1, 4),
then X(ω) = 1, Y(ω) = 4, and Z(ω) = 5. The function Z is the sum
of the two functions X and Y. We write this simply as Z = X + Y.

Consider n tosses of a fair coin. Let X be the number of heads.
Also, for each i, let

Xi =

1 if toss i turns up heads,

0 if toss i turns up tails.

It is easy to see how X and X1, . . . , Xn are random variables (that is,
functions from the sample space into the real line), and

X =
n

∑
i=1

Xi.

If X is a random variable and x is a real number, the event

{ω : X(ω) = x}

is usually abbreviated as {X = x}, and its probability is denoted by
P(X = x). Similarly, for any subset A of the real line, the event

{ω : X(ω) ∈ A}

is abbreviated as {X ∈ A} and its probability is written as P(X ∈ A).
Another convention is that if X and Y are two random variables
and A and B are two subsets of real numbers, then the event {X ∈
A} ∩ {Y ∈ B} is often written as {X ∈ A, Y ∈ B}.
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Probability mass function

The probability mass function (p.m.f.) of a random variable X is the
function f : R→ R defined as

f (x) = P(X = x),

and the cumulative distribution function (c.d.f.) is defined as

F(x) = P(X ≤ x).

For example, let X be the number of heads in n tosses of a fair coin.
Then, as we calculated earlier, the probability mass function of X is

f (k) =
(

n
k

)
2−n

when k is an integer between 0 and n, and 0 otherwise.
If the sample space is finite, a random variable can take only

finitely many possible values. If, however, the sample space is infi-
nite, the set of possible values of a random variable can be infinite. If
the set of possible values of a random variable is finite or countably
infinite, the random variable is called a discrete random variable.
Note that for a discrete random variable with p.m.f. f , f (x) 6= 0 only
for countably many x’s, and

∑
x

f (x) = 1,

since the events {X = x} form a partition of Ω as x ranges over all1818 This requires that the sum rule for
probabilities of unions of disjoint events
extends to countably infinite collections
of disjoint events. A proper justification
of this needs the measure theoretic
framework of probability theory. We
will just assume that this is true.

possible values of X. In this chapter, we will only deal with discrete
random variables.

We use the notation X ∼ f as an abbreviation of the sentence “The
random variable X has probability mass function f .”

Independence

A collection of discrete random variables X1, . . . , Xn is called inde-
pendent if for any x1, . . . , xn,

P(X1 = x1, X2 = x2, . . . , Xn = xn)

= P(X1 = x1)P(X2 = x2) · · · P(Xn = xn).

Note that unlike events, we did not require the product rule for all
subcollections. This is because it’s automatic.

Proposition 3. If X1, . . . , Xn is a collection of independent discrete random
variables, then any subcollection is also independent.
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Proof. We will prove that X1 and X2 are independent. The general
case is similar. Accordingly, note that for any x1 and x2, the event
{X1 = x1, X2 = x2} is the expressible as

{X1 = x1, X2 = x2}
=

⋃
x3,...,xn

{X1 = x1, X2 = x2, X3 = x3, . . . , Xn = xn},

where the sum is taken over all possible values of x3, . . . , xn, and
the events on the right are disjoint19. Since the random variables are

19 Prove this by showing that the two
sets contain each other.

discrete, the union is countable. Thus,

P(X1 = x1, X2 = x2) = ∑
x3,...,xn

P(X1 = x1, . . . , Xn = xn).

By independence, P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) · · · P(Xn =

xn). We can then bring the common factor P(X1 = x1)P(X2 = x2)

outside of the sum, getting

P(X1 = x1, X2 = x2)

= P(X1 = x1)P(X2 = x2) ∑
x3,...,xn

P(X3 = x3) · · · P(Xn = xn).

By the distributive law20, 20 For example, ∑i,j aibj = (∑i ai)(∑j bj).

∑
x3,...,xn

P(X3 = x3) · · · P(Xn = xn)

=

(
∑
x3

P(X3 = x3)

)
· · ·
(

∑
xn

P(Xn = xn)

)
= 1.

Thus, P(X1 = x1, X2 = x2) = P(X1 = x1)P(X2 = x2). Since this holds
for any x1 and x2, X1 and X2 are independent.

We will later encounter infinite sequences of independent random
variables. An infinite sequence of random variables X1, X2, . . . is
called independent if for each n, X1, . . . , Xn are independent.

Bernoulli and binomial random variables

Until now, we have only considered tosses of fair coins. There is also
the concept of a p-coin, which is a coin that turns up heads with
probability p and tails with probability 1− p, where p is a number in
the interval [0, 1]. A fair coin, then, is the same as a 1/2-coin. Math-
ematically, the sample space is Ω = {H, T}, with P(T) = 1− p and
P(H) = p. Let X : Ω → R be defined as X(T) = 0 and X(H) = 1.
Then P(X = 0) = 1− p and P(X = 1) = p. A random variable such
as X is called a Bernoulli(p) random variable. We abbreviate this by
writing X ∼ Bernoulli(p). Sometimes, we say that the distribution of
X is Bernoulli(p).
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Now suppose that a p-coin is tossed n times. If we want to define
a model that renders the outcomes of these n tosses independent,
then we must define

P(ω) = pk(1− p)n−k

for an outcome ω which has k heads and n− k tails21. This general-21 If P is defined in this manner, and Ai
is the event that toss i turns up heads,
show that the events A1, . . . , An are
independent.

izes the case of a fair coin (p = 1/2) that we have seen before. Let X
be the number of heads. Then clearly22,

22 Try to prove this if it is not obvious. P(X = k) =
(

n
k

)
pk(1− p)n−k.

for any integer k between 0 and n. Any random variable with this
p.m.f. is called a Bin(n, p) random variable.

Often, Bernoulli(p) is abbreviated as Ber(p) and Binomial(n, p) is
abbreviated as Bin(n, p).

Infinite sequence of coin tosses

Suppose that we decide to keep tossing a p-coin until it turns up
heads for the first time, and record the number of tosses required to
get there as a random variable X. Unless there is something severely
wrong with the coin (that is, it never turns up heads — in other
words, p = 0), this is going to happen eventually23. So this is an23 Can you prove this?

experiment that one can conduct in real life. But what is the sample
space for this experiment? A moment’s thought will reveal that we
cannot construct a finite sample space for this experiment. There is
no upper bound on the number of tosses required to complete the
experiment. The only recourse is to put it in the framework of an
experiment where the outcomes are all possible infinite sequences
of coin tosses, and for such an outcome ω, define X(ω) to be the
location of the first head in ω.

The main challenge in the above setup is the definition of proba-
bility. Consider the case p = 1/2. Then all outcomes must be equally
likely, but there are infinitely many outcomes. So the probability of
any single outcome must be zero. And yet, P(Ω) needs to be 1. This
makes it impossible to define the probability of an event as the sum
of the probabilities of its constituent outcomes. Instead, we directly
define probabilities of events so that they satisfy a certain set of ax-
ioms. The problem with this approach, again, is that it is generally
impossible to define probabilities of all events in this manner without
running into contradictions. In the rigorous mathematical defini-
tion of probability theory, this problem is resolved by defining the
probabilities of a subcollection of events, known as a σ-algebra. We try
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to ensure that the σ-algebra contains all events that will ever be of
interest to us.

In the above setting, let Xi be 1 if toss i turns up heads and 0 oth-
erwise. Then X1, X2, . . . are random variables defined on Ω. Without
going deeper into the measure theoretic foundation of probability,
let us only be content with the following: It is possible to define the
probabilities of a certain subcollection of events such that any event involv-
ing finitely many of the Xi’s belongs to this subcollection, and for any n,
X1, . . . , Xn are independent Bernoulli(p) random variables.

A sequence X1, X2, . . . as above is called an infinite sequence of
independent Bernoulli(p) random variables. Since these random
variables all have the same distribution, we say that they are inde-
pendent and identically distributed (i.i.d.).

In general, an infinite sequence of random variables X1, X2, . . .
is called independent if for every n, X1, . . . , Xn are independent. If
moreover the random variables have the same distribution, they are
called i.i.d.

Geometric random variables

Consider an infinite sequence of tosses of a p-coin, as discussed
above. Let X be the first time the coin turns up heads. Then we say
that X has a Geometric(p) distribution24. Often, Geometric(p) is ab- 24 Sometimes, X is defined to be the

number of tails before the first head.
We will not use that definition.

breviated as Geo(p).
Let us now derive the p.m.f. of X. Let Xi be 1 if toss i turns up

heads and 0 otherwise. Then for any k ≥ 1,

P(X = k) = P(X1 = 0, . . . , Xk−1 = 0, Xk = 1)

= P(X1 = 0) · · · P(Xk−1 = 0)P(Xk = 1)

= (1− p)k−1 p.

Notice that any positive integer is a possible value25 of X. 25 Can you show using the formula that
the sum of P(X = k) over all positive
integers k equals 1?

Poisson random variables

Take any real number λ > 0. A random variable X is said to have
a Poisson(λ) distribution (often abbreviated as Poi(λ)) if its set of
possible values is the set of nonnegative integers, and for any k ≥ 0,

P(X = k) = e−λ λk

k!
.

A simple way to construct such a random variable is to take Ω to
be the set of nonnegative integers, let P(k) be given by the above
formula26 for each k ∈ Ω, and let X(k) = k for each k ∈ Ω. But this 26 Show that ∑∞

k=0 P(k) = 1.
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feels like cheating, because X is not defined in terms of some natural
experiment. Indeed, what is the origin of a Poisson random variable?
Why are they important?

Typically, the number of occurrences of a certain type of event
within a continuous time period — for example, the number of
phone calls arriving at a call center in one hour — is modeled as a
Poisson random variable.

What is the justification for such modeling, besides the fact that it
is often quite successful? The mathematical reasoning comes from the
following result.

Proposition 4. Take any λ > 0. For each n, let Xn ∼ Bin(n, λ/n). Then
for any k ≥ 0,

lim
n→∞

P(Xn = k) = e−λ λk

k!
.

Proof. Note that

P(Xn = k) =
(

n
k

)
λk

nk

(
1− λ

n

)n−k

=
n(n− 1) · · · (n− k + 1)

k!
λk

nk

(
1− λ

n

)n−k

.

Now, for fixed k,

lim
n→∞

n(n− 1) · · · (n− k + 1)
nk = 1,

and

lim
n→∞

(
1− λ

n

)−k

= 1.

Moreover,

lim
n→∞

(
1− λ

n

)n

= e−λ.

The proof is completed by combining the above observations

Let us now try to understand the meaning of the above result
through an example. Consider the example of the call center. Sup-
pose that in each time interval of one second, the call center receives
a single call with probability 0.001, and no calls with probability
0.999. Assume that the calls are made independently. Then the num-
ber of calls received in one hour (call it X) has a Bin(3600, 0.001)
distribution. In other words, X ∼ Bin(n, λ/n), where n = 3600 and
λ = 3600× 0.001 = 3.6. Since 3600 is a large number, we can apply
Proposition 4 to conclude that X is approximately a Poi(3.6) random
variable. The advantage of doing so is that Poisson random variables
are mathematically easier to handle than binomial random variables
and have nicer properties.
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Joint probability mass function

Let X1, . . . , Xn be discrete random variables defined on the same
sample space. The function

f (x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn)

is called the joint probability mass function (joint p.m.f.) of the
random variables X1, . . . , Xn. In this context, the marginal p.m.f. of
Xi is

fi(x) = P(Xi = x).

The marginal p.m.f.’s can be obtained from the joint p.m.f. using the
following simple method:

fi(x) = ∑
x1,...,xi−1,xi+1,...,xn

f (x1, . . . , xi−1, x, xi+1, . . . , xn). (3)

This is a simple consequence of the observation that the event {Xi =

x} is the union of the disjoint events {X1 = x1, . . . , Xi−1 = xi−1, Xi =

x, Xi+1 = xi+1, . . . , Xn = xn} as x1, . . . , xi−1, xi+1, . . . , xn range over all
possible values of X1, . . . , Xi−1, Xi+1, . . . , Xn.

As an example, consider the following. Let n be a positive integer.
Choose (X, Y) uniformly from the set of An all pairs of positive
integers (x, y) such that x + y ≤ n. What this means is that An is the
set of all possible values of (X, Y), and P(X = x, Y = y) is the same
for every (x, y) ∈ An. For example, if n = 3, this set consists of the
pairs (1, 1), (1, 2) and (2, 1), and so in this case

P(X = 1, Y = 1) = P(X = 1, Y = 2) = P(X = 2, Y = 1) =
1
3

.

For general n, note that the number of (x, y) such that x + y = k is
exactly k− 1, which shows that27 27 This is the standard arithmetic series

summation formula.

|An| =
n

∑
k=2

(k− 1) =
n−1

∑
j=1

j =
n(n− 1)

2
,

and so for each (x, y) ∈ An,

P(X = x, Y = y) =
1
|An|

=
2

n(n− 1)
.

Thus, the joint p.m.f. of (X, Y) is the function

f (x, y) =

 2
n(n−1) if (x, y) ∈ An,

0 otherwise.
(4)

Let us now compute the marginal p.m.f.’s f1(x) = P(X1 = x) and
f2(y) = P(Y = y). Note that the possible values of X are 1, 2, . . . , n−
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1, and given that X = x, the possible values of Y are 1, 2, . . . , n − x.
Take any 1 ≤ x ≤ n− 1. Then by (3) and (4),

f1(x) = ∑
y

f (x, y) =
n−x

∑
y=1

2
n(n− 1)

=
2(n− x)
n(n− 1)

.

Similarly,

f2(y) =
2(n− y)
n(n− 1)

for y = 1, 2, . . . , n − 1. You may check that f1 and f2 are indeed
probability mass functions.

We sometimes use joint p.m.f.’s to establish independence of ran-
dom variables. The following result is used for this purpose.

Proposition 5. Let X1, . . . , Xn be discrete random variables with joint
probability mass function f . Suppose that

f (x1, . . . , xn) = h1(x1)h2(x2) · · · hn(xn)

for some probability mass functions h1, . . . , hn. Then X1, . . . , Xn are inde-
pendent, and Xi ∼ fi for i = 1, . . . , n.

Proof. Let f1, . . . , fn be the marginals of f . Since h1, . . . , hn are proba-
bility mass functions, equation (3) gives

f1(x) = ∑
x2,...,xn

f (x, x2, . . . , xn)

= ∑
x2,...,xn

h1(x)h2(x2) · · · hn(xn)

= h1(x) ∑
x2,...,xn

h2(x2) · · · hn(xn)

= h1(x)
(

∑
x2

h2(x2)

)
· · ·
(

∑
xn

hn(xn)

)
= h1(x).

Thus, f1 = h1. Similarly, fi = hi for every i, which shows that Xi ∼ fi.
Moreover, this also shows that

P(X1 = x1, . . . , Xn = xn) = f (x1, . . . , xn)

= h1(x1) · · · hn(xn)

= f1(x1) · · · fn(xn)

= P(X1 = x1) · · · P(Xn = xn).

Therefore, X1, . . . , Xn are independent.

As an illustrative application of Proposition 5, consider the fol-
lowing. In a sequence of tosses of a p-coin, let Xi be the number of



discrete random variables 27

tosses required to get the ith head after getting the (i− 1)th head. The
claim is that X1, X2, . . . are i.i.d. Geo(p) random variables. To see this,
just note that for any n, and any positive integers x1, . . . , xn, the event
{X1 = x1, . . . , Xn = xn} simply means that the first x1 − 1 tosses are
tails, the next one is head, the next x2 − 1 tosses are tails, the next one
is again head, and so on. Thus,

P(X1 = x1, . . . , Xn = xn) = (1− p)x1−1 p(1− p)x2−1 p · · · (1− p)xn−1 p.

But f (x) = (1− p)x−1 p is the p.m.f. of Geo(p). Therefore by Proposi-
tion 5, the claim is proved.

Conditional probability mass function

Let X and Y be discrete random variables with joint probability mass
function f . Take any x such that P(X = x) > 0. Then the conditional
probability mass function of Y given X = x is the function gx defined
as

gx(y) = P(Y = y|X = x) =
P(Y = y, X = x)

P(X = x)
=

f (x, y)
f1(x)

,

where f1 is the marginal p.m.f. of X. The standard convention is to
denote the joint p.m.f. of (X, Y) by fX,Y, the marginal p.m.f.’s of X
and Y by fX and fY, and the conditional p.m.f. of Y given X = x by
fY|X=x. In this notation,

fY|X=x(y) =
fX,Y(x, y)

fX(x)
.

For example, let X be the number of heads in n tosses of a p-coin,
and let Y be the number of heads in the first m tosses, where 1 ≤ m ≤
n. Then the joint density of (X, Y) at a point (x, y), where 0 ≤ y ≤ m,
0 ≤ x ≤ n, and 0 ≤ x− y ≤ n−m, is

fX,Y(x, y) = P(X = x, Y = y)

= P(Y = y, X−Y = x− y)

=

(
m
y

)(
n−m
x− y

)
px(1− p)n−x,

since the number of ways to get y heads in the first m tosses and x−
y heads in the next n−m tosses is (m

y )(
n−m
x−y ), and each such outcome

has probability px(1 − p)n−x. For any other (x, y), fX,Y(x, y) = 0.
On the other hand, we know that X ∼ Bin(n, p), and so, for any
0 ≤ x ≤ n,

fX(x) =
(

n
x

)
px(1− p)n−x.

Thus, for any 0 ≤ x ≤ n, the conditional p.m.f. of Y given X = x is

fY|X=x(y) =
(m

y )(
n−m
x−y )

(n
x)

,
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provided that the constraints 0 ≤ y ≤ m and 0 ≤ x − y ≤ n −
m are satisfied. Otherwise, fY|X=x(y) = 0. The constraints can be
alternatively written as2828 Check that the two versions are

equivalent.

max{0, x + m− n} ≤ y ≤ min{m, x}.

This distribution is called the hypergeometric distribution with
parameters n, m and x, and denoted by Hypergeometric(n, m, x).



Expectation and variance

Expected value

Let X be a discrete random variable. The expected value or expecta-
tion or mean of X is defined as

E(X) = ∑
x

xP(X = x),

where the sum29 is over all possible values of X, provided that the 29 From the frequentist viewpoint, E(X)
is the average value of X if the exper-
iment is repeated many times. This is
justified as follows. If the experiment
is repeated many times, then X takes
the value x approximate P(X = x)
fraction of times. Therefore the sum
defining E(X) is approximately the
overall average value of X.

sum converges absolutely30.

30 If the possible value are all non-
negative and the sum diverges, then
E(X) = ∞. If the sum is convergent but
not absolutely convergent, E(X) is left
undefined.

Let us now calculate the expected values of the various types of
random variables considered earlier. First, let X ∼ Bernoulli(p). Then

E(X) = 0 · P(X = 0) + 1 · P(X = 1) = 0 · (1− p) + 1 · p = p.

Next, let X ∼ Bin(n, p). Then

E(X) =
n

∑
k=0

kP(X = k) =
n

∑
k=0

k
(

n
k

)
pk(1− p)n−k.

Now note that the k = 0 term in the above sum is zero, and for k ≥ 1,

k
(

n
k

)
= k

n(n− 1) · · · (n− k + 1)
1 · 2 · · · (k− 1) · k

=
n(n− 1) · · · (n− k + 1)

1 · 2 · · · (k− 1)
= n

(
n− 1
k− 1

)
.

Therefore

E(X) =
n

∑
k=1

n
(

n− 1
k− 1

)
pk(1− p)n−k

= np
n

∑
k=1

(
n− 1
k− 1

)
pk−1(1− p)n−k

= np
n−1

∑
j=0

(
n− 1

j

)
pj(1− p)n−1−j (replacing j = k− 1)

= np(p + 1− p)n−1 (applying the binomial formula).

= np.
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Thus, if X ∼ Bin(n, p), then E(X) = np. This makes sense intuitively,
since a p-coin tossed n times is expected to turn up heads np times
on average.

Next, suppose that X ∼ Geo(p). Then

E(X) =
∞

∑
k=1

k(1− p)k−1 p.

Again, we use the differentiation trick, recalling that the derivative
can be moved inside an infinite sum if the result is absolutely conver-
gent. By the geometric series summation formula,

∞

∑
k=1

xk =
1

1− x
− 1.

when |x| < 1. Differentiating both sides, we get

∞

∑
k=1

kxk−1 =
1

(1− x)2 .

Plugging in x = 1− p, and multiplying both sides by p, we have

E(X) =
∞

∑
k=1

k(1− p)k−1 p =
1
p

.

Again, this makes sense intuitively, because a p-coin turns up head p
fraction of times, so the first head is expected to occur at toss number
1/p, on average.

Finally, let us calculate the expected value of a Poi(λ) random
variable. Let X ∼ Poi(λ). Then

E(X) =
∞

∑
k=0

kP(X = k) =
∞

∑
k=0

ke−λ λk

k!
.

Note that the k = 0 term does not contribute, and for k ≥ 1,

k
k!

=
1

(k− 1)!
.

This gives

E(X) = λe−λ
∞

∑
k=1

λk−1

(k− 1)!
= λe−λeλ = λ.

In view of Proposition 4, this makes perfect sense, since a Poi(λ)
random variable is approximately a Bin(n, λ/n) random variable for
large n, and the expected value of a Bin(n, λ/n) random variable is
n · λ/n = λ, as we know.
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Expectation of a function of random variables

The following result is often useful.

Proposition 6. Let X1, . . . , Xn be discrete random variables and Y =

f (X1, . . . , Xn) for some function f . Then

E(Y) = ∑
x1,...,xn

f (x1, . . . , xn)P(X1 = x1, . . . , Xn = xn).

Proof. Note that

E(Y) = ∑
y

yP(Y = y).

But for any y,

P(Y = y) = ∑
x1,...,xn :

f (x1,...,xn)=y

P(X1 = x1, . . . , Xn = xn).

Consequently,

E(Y) = ∑
y

y
(

∑
x1,...,xn :

f (x1,...,xn)=y

P(X1 = x1, . . . , Xn = xn)

)

= ∑
y

∑
x1,...,xn :

f (x1,...,xn)=y

yP(X1 = x1, . . . , Xn = xn)

= ∑
y

∑
x1,...,xn :

f (x1,...,xn)=y

f (x1, . . . , xn)P(X1 = x1, . . . , Xn = xn)

= ∑
x1,...,xn

f (x1, . . . , xn)P(X1 = x1, . . . , Xn = xn),

which completes the proof.

Linearity of expectation

A very important corollary of Proposition 6 is the following result,
known as linearity of expectation.

Corollary 3. Let X1, . . . , Xn be discrete random variables. Take any real
numbers a0, a1, . . . , an and let Y = a0 + a1X1 + · · ·+ anXn. Then

E(Y) = a0 + a1E(X1) + · · ·+ anE(Xn).
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Proof. By Proposition 6,

E(Y) = ∑
x1,...,xn

(a0 + a1x1 + · · ·+ anxn)P(X1 = x1, . . . , Xn = xn)

= a0 ∑
x1,...,xn

P(X1 = x1, . . . , Xn = xn)

+ a1 ∑
x1,...,xn

x1P(X1 = x1, . . . , Xn = xn)

+ · · ·+ an ∑
x1,...,xn

xnP(X1 = x1, . . . , Xn = xn).

Now,

∑
x1,...,xn

P(X1 = x1, . . . , Xn = xn) = 1,

since the events {X1 = x1, . . . , Xn = xn} are disjoint as we vary
x1, . . . , xn, and their union is Ω. Thus, the first term in the above
expression is simply a0.

Next, notice that for any x1, the event {X1 = x1} is the disjoint
union of the events {X1 = x1, . . . , Xn = xn} over all x2, . . . , xn.
Therefore for any x1,

∑
x2,...,xn

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1).

As a consequence, we have

∑
x1,...,xn

x1P(X1 = x1, . . . , Xn = xn)

= ∑
x1

∑
x2,...,xn

x1P(X1 = x1, . . . , Xn = xn)

= ∑
x1

x1

(
∑

x2,...,xn

P(X1 = x1, . . . , Xn = xn)

)
= ∑

x1

x1P(X1 = x1) = E(X1).

Similarly taking care of the other terms, we get the desired expres-
sion for E(Y).

To see how Corollary 3 greatly simplifies calculations, let us revisit
the expected value of a binomial random variable. Let X ∼ Bin(n, p).
We know that X can be written as X1 + · · · + Xn, where X1, . . . , Xn

are Bernoulli(p) random variables. Therefore

E(X) = E(X1) + · · ·+ E(Xn) = np,

which is quite a bit simpler than our previous calculation of E(X).



expectation and variance 33

The method of indicators

Let A be an event. The indicator of A is a random variable, denoted
by 1A, defined as follows:

1A(ω) =

1 if ω ∈ A,

0 if ω /∈ A.

Clearly, 1A is a Bernoulli(p) random variable, where p = P(A). In
particular, E(1A) = P(A). The method of indicators is a technique
for evaluating the expected value of a complicated random vari-
able X by finding a way to write X as a sum of indicator variables
1A1 , . . . , 1An for some events A1, . . . , An (that is, X counts the number
of i such that Ai happened), and then using linearity of expectation
to write

E(X) =
n

∑
i=1

E(1Ai ) =
n

∑
i=1

P(Ai).

Let us now work out some examples to understand what’s going on.
We have already seen one example of this, namely, when X is the
number of heads in n tosses of a p-coin. In that setting, we let Ai be
the event that toss i turns up heads. Then X = ∑n

i=1 1Ai , and so

E(X) =
n

∑
i=1

P(Ai) = np,

since P(Ai) = p for each i.
Next, recall the example of inserting n letters randomly into n en-

velopes. Let X be the number of letters that go into correct envelopes.
Previously, we calculated P(X = 0). How can we calculate E(X)?
To do that, let us define Ai to be the event that letter i goes into the
correct envelope, so that X = ∑n

i=1 1Ai . If letter i is put into the cor-
rect envelope, then the remaining letters can be distributed in (n− 1)!
ways, which shows that

P(Ai) =
(n− 1)!

n!
=

1
n

.

Therefore,

E(X) =
n

∑
i=1

P(Ai) = 1.

Thus, on average, the number of letters going into correct envelopes
is 1.

As our third example, consider an experiment where n balls are
dropped independently at random into n boxes (so that multiple
balls are allowed to fall into the same box). Let X be the number of
empty boxes. What is E(X)? The random variable X has no simple
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distribution, but it is fairly easy to compute E(X) using the method
of indicators. Let Ai be the event that box i is empty. Then X =

∑n
i=1 1Ai .
Now note that, by the fundamental principle of counting, the total

number of ways of distributing the balls in the boxes is nn. On the
other hand if box i has to be kept empty, then the number of ways of
distributing the balls is (n− 1)n. Therefore

P(Ai) =
(n− 1)n

nn =

(
1− 1

n

)n

.

Thus, we get

E(X) =
n

∑
i=1

P(Ai) = n
(

1− 1
n

)n

.

Note that this is approximately ne−1 when n is large. In other words,
the expected fraction31 of empty boxes is approximately e−1.31 We will see later, when we will

discuss laws of large numbers, that the
actual fraction X/n is also close to e−1

with high probability.

As our last example, let us consider consider the number X of head
runs in a sequence of n tosses of a p-coin. A head run is simply a
continuous sequence of heads. For example, the sequence

HHHTTHTHTTTHH

has 4 head runs, starting at tosses 1, 6, 8 and 12.
Again, the distribution of X is not easy to determine, but E(X)

can be evaluated using the method of indicators. The solution is a
bit less obvious in this example than the previous ones. Notice that
to count head runs, we simply have to count the number of tosses
where a head run began. A head run can begin at toss 1, which is
identified by the occurrence of a head on toss 1. Let us call this event
A1. Else, a head run can begin at a toss i ≥ 2, which is identified by
the occurrence of a head on toss i and a tail on toss i − 1. Let us call
this event Ai. This shows that X = ∑n

i=1 1Ai .
Now, P(A1) = p, and P(Ai) = p(1− p) for i ≥ 2. Therefore3232 Again, we will see later that the

random variable X — and not just
E(X) — is close to np(1− p) with high
probability when n is large. E(X) =

n

∑
i=1

P(Ai) = p + (n− 1)p(1− p).

When p = 1/2, this gives E(X) = (n + 1)/4.

Variance

The variance of a random variable X is defined as

Var(X) = E(X2)− (E(X))2.

The variance measured the average squared deviation from the mean.
The meaning of this statement is made clear by the following simple
result.



expectation and variance 35

Proposition 7. Let X be a random variable and let Y = X − E(X). Then
Var(X) = E(Y2).

Proof. Let a = E(X). Then

E(Y2) = E(X2 − 2aX + a2) = E(X2)− 2aE(X) + a2.

But E(X) = a, and so 2aE(X) = 2a2. Plugging this into the above
expression, we get E(Y2) = E(X2)− a2 = Var(X).

Due to the above alternative expression of Var(X), the square root
of the variance is called the standard deviation of X. It is a measure
of how much X deviates from its expected value on average.

An immediate consequence of Proposition 7 is that if X is a ran-
dom variable and b, c are two real numbers, then

Var(bX + c) = b2Var(X).

To see this, just note that bX + c − E(bX + c) = bY, where Y =

X− E(X), and apply Proposition 7.
Let us now work out some examples. First, let X ∼ Bernoulli(p).

Then we know that E(X) = p. But X2 = X since the only possible
values of X are 0 and 1. Therefore E(X2) is also p. Thus,

Var(X) = p− p2 = p(1− p).

The variance of a Bin(n, p) random variable is np(1− p). Although it
is not very difficult to prove this directly, a much simpler derivation
is possible by a method that we will discuss later. So let us postpone
this computation.

Next let X ∼ Geo(p). A little trick helps in the computation of
E(X2). Observe that

E(X(X− 1)) =
∞

∑
k=1

k(k− 1)(1− p)k−1 p

= p(1− p)
∞

∑
k=2

k(k− 1)(1− p)k−2.

But for |x| < 1,

∞

∑
k=2

k(k− 1)xk−2 =
d2

dx2

( ∞

∑
k=0

xk
)

=
d2

dx2
1

1− x
=

2
(1− x)3 .

Combining the above two observations, we get

E(X(X− 1)) = p(1− p)
2

(1− (1− p))3 =
2(1− p)

p2 .
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But we know that E(X) = 1/p. Thus,

E(X2) = E(X(X− 1) + X) =
2(1− p)

p2 +
1
p
=

2
p2 −

1
p

.

Finally, we get

Var(X) = E(X2)− (E(X))2 =
2
p2 −

1
p
− 1

p2 =
1− p

p2 .

We can employ the same trick for Poisson. Let X ∼ Poi(λ). Then

E(X(X− 1)) =
∞

∑
k=0

k(k− 1)e−λ λk

k!

= e−λ
∞

∑
k=2

λk

(k− 2)!

= e−λλ2
∞

∑
k=2

λk−2

(k− 2)!
= e−λλ2eλ = λ2.

Recall that E(X) = λ. Therefore, we get

E(X2) = E(X(X− 1) + X) = λ2 + λ,

and so
Var(X) = E(X2)− (E(X))2 = λ2 + λ− λ2 = λ.

Thus, the expectation and the variance of a Poi(λ) random variable
are both equal to λ.

Covariance

The covariance of two random variables X and Y is defined as

Cov(X, Y) = E(XY)− E(X)E(Y).

Notice that Var(X) = Cov(X, X). An equivalent expression for
covariance is3333 Prove the equivalence.

Cov(X, Y) = E[(X− E(X))(Y− E(Y))].

Given a real number a, let us also denote by a the random variable
that always takes the value a. Then E(a) = a, and E(Xa) = aE(X) by
linearity of expectation. Therefore Cov(X, a) = 0.

Note that Cov(X, Y) = Cov(Y, X). Another very important prop-
erty of covariance is that it is bilinear, as shown by the following
result.

Proposition 8. Let X1, . . . , Xm, Y1, . . . , Yn be random variables and
a1, . . . , am, b1, . . . , bn be real numbers. Let U = a1X1 + · · · + amXm

and V = b1Y1 + · · ·+ bnYn. Then

Cov(U, V) =
m

∑
i=1

n

∑
j=1

aibjCov(Xi, Yj).
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Proof. By the distributive law and the linearity of expectation,

E(UV) =
m

∑
i=1

n

∑
j=1

aibjE(XiYj).

Similarly,

E(U)E(V) =

( m

∑
i=1

aiE(Xi)

)( n

∑
j=1

bjE(Yj)

)

=
m

∑
i=1

n

∑
j=1

aibjE(Xi)E(Yj).

Therefore

Cov(U, V) = E(UV)− E(U)E(V)

=
m

∑
i=1

n

∑
j=1

aibj(E(XiYj)− E(Xi)E(Yj))

=
m

∑
i=1

n

∑
j=1

aibjCov(Xi, Yj),

which completes the proof.

The following corollary is often useful.

Corollary 4. Let X1, . . . , Xn be random variables and a1, . . . , an be real
numbers. Let U = a1X1 + · · ·+ anXn. Then

Var(U) =
n

∑
i,j=1

aiajCov(Xi, Xj).

Proof. Recall that Var(U) = Cov(U, U), and apply Proposition 8.

The above corollary, combined with the method of indicators, al-
lows us to calculate variances of fairly complicated random variables.
We will do this a little later, after taking care of one other important
matter.

Expectation of a product of independent random variables

When computing covariances, the following fact is often useful.

Proposition 9. Let X1, . . . , Xn be independent random variables. Then

E(X1X2 · · ·Xn) = E(X1)E(X2) · · · E(Xn).
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Proof. By Proposition 6,

E(X1 · · ·Xn) = ∑
x1,...,xn

x1 · · · xnP(X1 = x1, . . . , Xn = xn).

But by independence,

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) · · · P(Xn = xn).

Therefore

E(X1 · · ·Xn) = ∑
x1,...,xn

x1 · · · xnP(X1 = x1) · · · P(Xn = xn)

= ∑
x1,...,xn

(x1P(X1 = x1)(x2P(X2 = x2)) · · · (xnP(Xn = xn))

=

(
∑
x1

x1P(X1 = x1)

)
· · ·
(

∑
xn

xnP(Xn = xn)

)
= E(X1) · · · E(Xn),

which completes the argument.

The most important corollary of the above result is the following.

Corollary 5. If X and Y are independent, then Cov(X, Y) = 0.

Proof. By Proposition 9, E(XY) = E(X)E(Y), which immediately
implies that Cov(X, Y) = 0.

A corollary of the above corollary is the following.

Corollary 6. Let X1, . . . , Xn be independent random variables and let
a1, . . . , an be real numbers. Let U = a1X1 + · · ·+ anXn. Then

Var(U) =
n

∑
i=1

a2
i Var(Xi).

Proof. By Corollary 4,

Var(U) =
n

∑
i,j=1

aiajCov(Xi, Xj).

But by independence and Corollary 5, Cov(Xi, Xj) = 0 whenever
i 6= j. Since Cov(Xi, Xi) = Var(Xi), this completes the proof.

As an application of Corollary 6, let us now calculate the variance
of a binomial random variable. Let X ∼ Bin(n, p), and let us write
X = X1 + · · ·+ Xn, where X1, . . . , Xn are independent Bernoulli(p)
random variables. Then by Corollary 6,

Var(X) =
n

∑
i=1

Var(Xi).

But we know that Var(Xi) = p(1− p) for each i. Therefore

Var(X) = np(1− p).
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The method of indicators for variance

The method of indicators, in conjunction with Corollary 4, gives a
powerful method for calculating the variances of complicated ran-
dom variables. As an illustrative example, let us revisit the problem
of dropping n balls independently at random into n boxes. Let X be
the number of empty boxes. Let Ai be the event that box i is empty,
so that X = ∑n

i=1 1Ai . Then by Corollary 4,

Var(X) =
n

∑
i,j=1

Cov(1Ai , 1Aj). (5)

Recall that 1Ai is a Bernoulli(p) random variable where

p =

(
1− 1

n

)n

.

So for each i,

Cov(1Ai , 1Ai ) = Var(1Ai ) = p(1− p)

=

(
1− 1

n

)n[
1−

(
1− 1

n

)n]
.

Next, note that for any i 6= j,

1Ai 1Aj = 1Ai∩Aj

because the left side is 1 if both Ai and Aj happen, and 0 otherwise.
Therefore

E(1Ai 1Aj) = E(1Ai∩Aj) = P(Ai ∩ Aj).

Now, Ai ∩ Aj is the event that boxes i and j are both empty. Therefore
by counting34, 34 Figure this out on your own if it is not

clear.

P(Ai ∩ Aj) =
(n− 2)n

nn =

(
1− 2

n

)n

.

Thus, for i 6= j,

Cov(1Ai , 1Aj) =

(
1− 2

n

)n

−
(

1− 1
n

)2n

.

Now, in (5), there are n terms where i = j, and n(n− 1) terms where
i 6= j. Thus,

Var(X) = n
(

1− 1
n

)n[
1−

(
1− 1

n

)n]
+ n(n− 1)

[(
1− 2

n

)n

−
(

1− 1
n

)2n]
.

This is the exact value of the variance of X. It is interesting to figure
out the asymptotic behavior of this as n → ∞. If you like a challenge,
you can try to show that this behaves like35 n(e− 2)/e2 for large n.

35 More precisely, show that

lim
n→∞

Var(X)

n(e− 2)/e2 = 1.





Laws of large numbers

Elementary inequalities

Until now, we have been calculating exact values of probabilities,
expectations, etc. Often, however, it is hard to calculate exactly. If
that is the case, it helps to give upper and lower bounds. These are
known as inequalities. The simplest inequality in probability theory is
the following. Let A and B be events such that A implies B. Then set
theoretically, A ⊆ B. A consequence of this is that B is the disjoint
union of A and B \ A, which shows that

P(A) ≤ P(B).

Another very simple and useful inequality is that if X is a nonnega-
tive random variable (which means that X(ω) ≥ 0 for all ω), then

E(X) ≥ 0.

For discrete random variables (which is the only kind discussed so
far), this is obvious from the definition of E(X).

Let X and Y be two random variables. We say X ≤ Y if X(ω) ≤
Y(ω) for all ω. If X ≤ Y, then the random variable Y − X is nonneg-
ative, and therefore E(Y − X) ≥ 0. By linearity of expectation, this
means that

E(X) ≤ E(Y). (6)

An important consequence of this inequality is the union bound, also
known as Boole’s inequality or Bonferroni’s inequality, which says
that for any events A1, . . . , An,

P(A1 ∪ · · · ∪ An) ≤
n

∑
i=1

P(Ai).

To prove this, let X = 1A1∪···∪An and Y = ∑n
i=1 1Ai . Then clearly,

X ≤ Y, because X(ω) is either 0 or 1 for each ω, Y(ω) is nonnegative,
and if X(ω) = 1, then 1Ai (ω) = 1 for some i. Thus

P(A1 ∪ · · · ∪ An) = E(X) ≤ E(Y) =
n

∑
i=1

P(Ai).
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Note that if the sample space is finite or countable, this has an easy
proof from the observation that ∑ P(Ai) sums P(ω) for each ω in the
union at least once.

Another important consequence of (6) is the following. For any
random variable X, X ≤ |X| always, so we have E(X) ≤ E|X|. Since
−X is also ≤ |X|, we have −E(X) = E(−X) ≤ E|X|. Thus,

|E(X)| ≤ E|X|.

A different upper bound on |E(X)| is obtained by using the fact that
Var(X) ≥ 0. Note that this inequality can be rewritten as E(X2) ≥
(E(X))2, which gives

|E(X)| ≤
√

E(X2).

The above inequality has the following generalization.

Proposition 10. For any random variable X and any real number p ≥ 1,

|E(X)| ≤ (E|X|p)1/p.

Proof. For any y ≥ 0, we claim that

y ≤ yp

p
+ 1− 1

p
.

To prove this, observe that the two sides are equal when y = 1, and
the derivative of the right side is greater than that of the left side
when y ≥ 1, and less than that of the left side when y ≤ 1. Thus, the
right side must always lie above the left side.

This inequality implies that if Y is a nonnegative random variable
with E(Yp) = 1, then

E(Y) ≤ E(Yp)

p
+ 1− 1

p
= 1.

Now take any random variable X and apply the above inequality to
the nonnegative random variable Y = |X|/(E|X|p)1/p, which satisfies
E(Yp) = 1. Finally, apply |E(X)| ≤ E|X|.

Markov’s inequality

The following important result is the first nontrivial inequality in
probability theory, commonly known as Markov’s inequality.

Theorem 1 (Markov’s inequality). Let X be a nonnegative random
variable. Then for any t > 0,

P(X ≥ t) ≤ E(X)

t
.
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Proof. Let Y = 1{X≥t}. Let Z = X/t. Then note that if Y(ω) = 0,
then Y(ω) ≤ Z(ω) since Z is always nonnegative. On the other hand,
if Y(ω) = 1, then X(ω) ≥ t, and hence Z(ω) ≥ 1 = Y(ω). Thus,
Y ≤ Z always, and therefore E(Y) ≤ E(Z). But E(Y) = P(X ≥ t) and
E(Z) = E(X)/t by linearity of expectation.

As a simple application of Markov’s inequality, let us revisit the
secretary problem. Let n letters be inserted randomly into n marked
envelopes, and let X be the number of letters that go into the cor-
rect envelopes. We showed that E(X) = 1 in the previous chapter.
Therefore by Markov’s inequality36, 36 The actual probability of this event

is much less than 1/k, but Markov’s
inequality gives a simple way of getting
a meaningful bound.P(X ≥ k) ≤ 1

k

for each k. For example, the chance that 10 or more letters get in-
serted correctly is ≤ 0.1.

Chebyshev’s inequality

The following result, known as Chebyshev’s inequality, shows that
the difference between the value of a random variable and its ex-
pected value is unlikely to be a large multiple of its standard devia-
tion. The stunning generality of this result makes it extremely useful
in theory and practice.

Theorem 2 (Chebyshev’s inequality). Let X be any random variable.
Then for any t > 0,

P(|X− E(X)| ≥ t) ≤ Var(X)

t2 .

Proof. Let Y := (X− E(X))2. Then by Markov’s inequality,

P(|X− E(X)| ≥ t) = P((X− E(X))2 ≥ t2) = P(Y ≥ t2) ≤ E(Y)
t2 .

But by Proposition 7, E(Y) = Var(X). This completes the proof.

To understand the meaning of Chebyshev’s inequality, consider
the following. Let s be the standard deviation of X. Then Cheby-
shev’s inequality gives us that for any L > 0,

P(|X− E(X)| ≥ Ls) ≤ Var(X)

L2s2 =
1
L2 .

Thus, for example, the chance that X deviates from E(X) by more
than 5 times its standard deviation is ≤ 1/25. Note that this is true
for any X. For a specific X, the probability may be much smaller.
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As a concrete example, consider a fair coin tossed one million
times. Let X be the number of heads. Then E(X) = 500000 and
Var(X) = 250000. Therefore the standard deviation of X is the
square-root of 250000, which is 500. By Chebyshev’s inequality, the
probability of deviating from the mean by more than 10 standard
deviations is ≤ 0.01. In other words,

P(495000 ≤ X ≤ 505000) ≥ 0.99.

Convergence in probability

Suppose that a random variable X lies within the interval [1.99, 2.01]
with probability 0.99. Then we may say that X is approximately
equal to 2 with high probability. Generalizing this, suppose that we
have a sequence of random variables X1, X2, . . . such that for each n,
Xn belongs to the interval [2− 1/n, 2 + 1/n] with probability 1− 1/n.
Then, as n increases, it becomes more and more likely that Xn is close
to 2. We may reasonably declare that Xn ‘converges’ to 2. However,
this notion of convergence is quite different than the convergence
of real numbers. In fact, it is so different that a new definition is
necessary.

Definition 1. Let X1, X2, . . . be a sequence of random variables, and c
be a real number. We say that Xn → c in probability if for any ε > 0,

lim
n→∞

P(|Xn − c| ≥ ε) = 0.

For example, if Xn ∼ Bernoulli(1/n), then Xn → 0 in probability,
because for any given ε > 0, eventually 1/n becomes smaller than ε,
and so P(|Xn − 0| ≥ ε) = 1/n for all large enough n.

The following result gives a very useful method for proving con-
vergence in probability.

Theorem 3. Let X1, X2, . . . be a sequence of random variables. If E(Xn)

converges to a real number c, and Var(Xn) → 0, then Xn → c in probabil-
ity.

Proof. Take any ε > 0. By Markov’s inequality,

P(|Xn − c| ≥ ε) = P((Xn − c)2 ≥ ε2) ≤ E(Xn − c)2

ε2 .

Let an = E(Xn). Then

E(Xn − c)2 = E(Xn − an + an − c)2

= E(Xn − an)
2 + 2(an − c)E(Xn − an) + (an − c)2.
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But E(Xn − an)2 = Var(Xn) and E(Xn − an) = 0. Thus,

E(Xn − c)2 = Var(Xn) + (an − c)2,

and so

P(|Xn − c| ≥ ε) ≤ Var(Xn) + (an − c)2

ε2 .

But Var(Xn)→ 0 and an → c. Thus,

lim
n→∞

P(|Xn − c| ≥ ε) = 0.

But this holds for any ε > 0. Thus, Xn → c in probability.

The weak law of large numbers

We have learnt that the expected value of a random variable X
should be thought of as the ‘long term average value’ of X in many
repeated experiments. However, we have not yet seen a mathematical
justification of this claim. The following result, known as the weak
law of large numbers, gives such a justification37. Recall that a se-

37 We have to be careful about calling
this a justification. The frequentist view
of probability assumes that probabilities
and expectations are long term aver-
ages, whereas the law large numbers
seems to be proving this claim. Have
we then been able to prove what we
assumed earlier? Not really. Consider,
for example, a fair coin tossed n times.
The weak law of large numbers says
that with high probability, the number
of heads is close to n/2. But this is not
a sequence of repeated experiments
— we are now in the framework of a
single experiment of n tosses, where all
possible sequences are equally likely.
In other words, we now have a new
assumption: If this experiment of n
tosses is repeated many times, then
each sequence will occur 2−n fraction
of those times. Under this assumption,
the theorem implies that most of the
times this experiment is conducted, we
will observe approximately n/2 heads.
We do not really have a framework for
repeated experiments in probability
theory; we always work with a single
experiment. So we can never mathemat-
ically justify the assumption that the
probability of an outcome is the fraction
of times that outcome will occur if the
experiment is repeated many times.

quence of random variables is called independent and identically
distributed (i.i.d.) if the variables are independent and they all have
the same distribution.

Theorem 4 (Weak law of large numbers). Let X1, X2, . . . be an i.i.d. se-
quence of random variables with expected value µ and finite variance. For
each n, let

Xn :=
1
n

n

∑
i=1

Xi

be the average of the first n of these variables. Then as n → ∞, Xn → µ in
probability.

Proof. Since X1, X2, . . . are independent, Corollary 6 from the previ-
ous chapter gives

Var(Xn) =
1
n2

n

∑
i=1

Var(Xi).

Since X1, X2, . . . are identically distributed, Var(Xi) = Var(X1) for all
i. Thus,

Var(Xn) =
Var(X1)

n
,

which tends to 0 as n → ∞. Also, by linearity of expectation,
E(Xn) = µ for each n. Therefore by Theorem 3, Xn → µ in prob-
ability.
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Two applications of the weak law

The simplest application of the weak law of large numbers is in coin
tossing. Suppose a p-coin is tossed n times. It is a direct consequence
of the weak law that the fraction of heads converges in probability to
p as n → ∞. To see this, just let Xi be 1 if toss i turns up heads and
0 otherwise. Then X1, X2, . . . are i.i.d. Bernoulli(p) random variables,
and Xn is the fraction of heads in the first n tosses.

Next, consider the number of tosses of a p-coin that are required
to get n heads. This can be seen as a sum of independent Geo(p)
random variables Y1, Y2, . . . , Yn, where Yi is the number of tosses
required to get the ith head after getting the (i − 1)th head. (This
was established as an application of Proposition 5 in the chapter on
discrete random variables.) Thus, if Zn is the time to get the nth head,
then the weak law tells us that Zn/n→ 1/p in probability as n→ ∞.

Example: Number of empty boxes

The weak law of large numbers applies only to averages of i.i.d. ran-
dom variables. Many other kinds of random variables converge in
probability. All of these examples can be called ‘laws of large num-
bers’. For one such, let us consider a familiar example from the pre-
vious chapter. Let n balls be dropped independently at random into
n boxes, and let Xn be the number of empty boxes38. We calculated

38 Previously, we denoted this by X
without the subscript, but since we
will be taking n → ∞ here, adding a
subscript is necessary.

that

E(Xn) = n
(

1− 1
n

)n

and

Var(Xn) = n
(

1− 1
n

)n[
1−

(
1− 1

n

)n]
+ n(n− 1)

[(
1− 2

n

)n

−
(

1− 1
n

)2n]
.

Let Yn = Xn/n be the fraction of empty boxes. Then by the above
formulas,

E(Yn) =

(
1− 1

n

)n

→ e−1 as n→ ∞,

and

Var(Yn) =
1
n2 Var(Xn)

=
1
n

(
1− 1

n

)n[
1−

(
1− 1

n

)n]
+

(
1− 1

n

)[(
1− 2

n

)n

−
(

1− 1
n

)2n]
.
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Since (1− 1/n)n → e−1, (1− 2/n)n → e−2 and (1− 1/n)2n → e−2, it
follows that Var(Yn)→ 0 as n→ ∞. Thus, by Theorem 3, Yn → e−1 in
probability.

Example: Number of head runs

Let Xn be the number of head runs in a sequence of n tosses of a
p-coin. From the previous chapter, we know that

E(Xn) = p + (n− 1)p(1− p).

Let A1 be the event that the first toss comes up heads, and for each
i ≥ 2, let Ai be the event that the toss i is heads and toss i− 1 is tails.
Then we know that Xn = ∑n

i=1 1Ai . Thus, by Corollary 4,

Var(Xn) =
n

∑
i=1

n

∑
j=1

Cov(1Ai , 1Aj).

Now note that the events Ai and Aj are independent if |i − j| ≥
2, and therefore39 the covariance is zero under this condition (by 39 We also need the fact that if A and B

are independent events, the 1A and 1B
are independent random variables. Try
to prove this.

Corollary 5). Thus, for each i, Cov(1Ai , 1Aj) may be nonzero for at
most 3 values of j. Even if the covariance is nonzero, it is bounded by
1, since

Cov(1Ai , 1Aj) = E(1Ai 1Aj)− E(1Ai )E(1Aj)

≤ E(1Ai 1Aj) = P(Ai ∩ Aj) ≤ 1.

Combining these observations, we see that

Var(Xn) ≤ 3n.

Therefore, if Yn = Xn/n, then E(Yn) → p(1− p) and Var(Yn) → 0 as
n→ ∞. By Theorem 3, this tells us that Yn → p(1− p) in probability.

Example: The coupon collector’s problem

Suppose that there are n types of coupons, and each time you buy
an item, you get a randomly selected type of coupon. In particular,
you may get the same type of coupon multiple times. Let n be the
number of times you have to buy before you acquire all n types of
coupons. Figuring out the behavior of Tn for large n is a classical
problem in probability theory. We will now show that Tn is approxi-
mately n log n with high probability, in the sense that

Tn

n log n
→ 1 in probability as n→ ∞. (7)
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Let Xi be the number of trials required to get the ith new type of
coupon after having obtained i − 1 distinct types of coupons. Note
that X1 is always equal to 1, but X2, X3, . . . , Xn are not deterministic.
We claim that X1, . . . , Xn are independent random variables, with
Xi ∼ Geo((n − i + 1)/n) for each i. To prove this, consider the
probability

P(X1 = x1, . . . , Xn = xn)

for some positive integers x1, . . . , xn. Let m0 = 0 and mi = x1 +

· · · + xi for i = 1, . . . , n, so that mi is the time at which the ith new
coupon is obtained. The event {X1 = x1, . . . , Xn = xn} is an event
involving the first mn trials. By assumption, all possible outcomes
of the first mn trials are equally likely. The number of all possible
outcomes is nmn . Therefore the above probability can be obtained
simply by counting the number of outcomes that result in the event
{X1 = x1, . . . , Xn = xn} and dividing by nmn .

To construct an outcome belonging to this event, we can first
choose the order in which the n types of coupons are obtained, which
gives us the coupons obtained at times m1, . . . , mn. This can be done
in n! ways. Once this is determined, there are i− 1 ways of choosing
coupons for each time point j ∈ {mi−1 + 1, . . . , mi − 1}, since each
such coupon has to belong to the set of i− 1 coupons chosen by time
mi−1. Thus,

P(X1 = x1, . . . , Xn = xn) =
n! ∏n

i=1(i− 1)xi−1

nmn
.

(Recall the ∏ is the sign for product, just as ∑ is the sign for sum.
The term for i = 1 is 0 if xi > 1 and 1 otherwise.) An easy inspection
reveals that the right side can be written as

n

∏
i=1

(
1− n− i + 1

n

)xi−1 n− i + 1
n

. (8)

By Proposition 5, this shows that X1, . . . , Xn are independent random
variables, with Xi ∼ Geo((n− i + 1)/n).

There is also a more intuitive way to arrive at the above conclu-
sion. Note that

P(X1 = x1, . . . , Xn = xn)

= P(X1 = x1)
n

∏
i=2

P(Xi = xi|X1 = x1, . . . , Xi−1 = xi−1).

Take any i. Given that X1 = x1, . . . , Xi−1 = xi−1, we know that
i − 1 distinct coupons have been found up to time x1 + · · · + xi−1.
Irrespective of the identities of these coupons, each subsequent trial is
likely to yield a new coupon with probability (n− i + 1)/n. Thus, the
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waiting time for the next new coupon should follow a Geo((n− i +
1)/n) distribution. This gives40 40 This kind of argument is acceptable

only if the writer and the reader are
both experienced in probability theory.
Unless backed by experience, this
style of proof can lead to erroneous
conclusions. The style of the first
argument is less prone to errors.

P(Xi = xi|X1 = x1, . . . , Xi−1 = xi−1) =

(
1− n− i + 1

n

)xi−1 n− i + 1
n

,

which again yields the formula (8).
It is now easy to prove (7). By the independence of the Xi’s and

the formulas for the expected value and variance of geometric ran-
dom variables,

E(Tn) =
n

∑
i=1

E(Xi)

=
n

∑
i=1

n
n− i + 1

= n
(

1 +
1
2
+ · · ·+ 1

n

)
,

and

Var(Tn) = Var
( n

∑
i=1

Xi

)
=

n

∑
i=1

Var(Xi) =
n

∑
i=1

n(i− 1)
(n− i + 1)2

≤ n2
(

1 +
1
22 +

1
32 + · · ·+ 1

n2

)
.

Now recall from basic calculus and real analysis41 that

41 To see this quickly, note that the
step function which equals 1/i in the
interval [i, i + 1] is lower bounded by
the function 1/x in [1, ∞) and upper
bounded by 1/(x − 1) in [2, ∞). This
gives∫ n

1

dx
x
≤

n

∑
i=1

1
i
≤ 1 +

∫ n

2

dx
x− 1

.

The integrals on both sides are asymp-
totic to log n. One can argue similarly
for ∑ i−2 using the function x−2.

lim
n→∞

1
log n

n

∑
i=1

1
i
= 1,

and
∞

∑
i=1

1
i2

< ∞.

These results, when combined with the above formulas for E(Tn) and
Var(Tn), yield that

lim
n→∞

E
(

Tn

n log n

)
= 1

and

lim
n→∞

Var
(

Tn

n log n

)
= 0.

By Theorem 3, this completes the proof of (7).
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Probability density function

Recall that a random variable is simply a function from the sample
space into the real line. A random variable X is called continuous if
there is a function f : R→ [0, ∞) such that for any −∞ ≤ a ≤ b ≤ ∞,

P(a < X ≤ b) =
∫ b

a
f (x)dx. (9)

The function f is called the probability density function (p.d.f.) of
X. Note that a p.d.f. is by definition nonnegative, and∫ ∞

−∞
f (x)dx = P(−∞ < X ≤ ∞) = 1.

Observe that at any x where f is continuous,

f (x) = lim
ε→0

1
2ε

∫ x+ε

x−ε
f (y)dy = lim

ε→0

1
2ε

P(x− ε < X ≤ x + ε). (10)

Thus, if x is a continuity point of f , then f (x) can be interpreted as
the chance that X belongs to a small interval centered at x, divided
by the length of the interval42.

42 Without continuity, however, we
cannot make this claim. For example, if
f is the p.d.f. of X, and we change the
value of f at a single point z to get a
new function g, then equation (9) is also
satisfied with g. Therefore g can also be
considered to be a p.d.f. of X, although
f and g differ at z.

Let X be a continuous random variable with p.d.f. f . It follows
from equation (9) is that for any subset43 A of the real line,

43 Actually, this holds only for Borel
measurable subsets, but a discussion
of that requires measure theory. Fortu-
nately, non-Borel sets are extremely rare
and strange.

P(X ∈ A) =
∫

A
f (x)dx. (11)

The derivation of (11) from (9) needs measure theory. The rough idea
is that any subset of R that is not too weird can be approximately
represented as a union of disjoint intervals, and then (9) can be ap-
plied to each interval and the results added up to get (11).

Another important fact44 is that for any real number x,

44 This may look strange, because it
says that the chance of X being exactly
equal to x is zero for any x. But if the
experiment is carried out, X will take
on some value. So if the chance of X
being equal to any given value is zero,
how can it take on some value when the
experiment is conducted? The reason
is that for an uncountable collection of
disjoint events, the probability of the
union need not be equal to the sum
of the probabilities. This law holds
only for unions of a finite or countably
infinite number of disjoint events.

P(X = x) =
∫ x

x
f (y)dy = 0.

A consequence of this is that for any a and b, the probabilities of X
belonging to the intervals [a, b], (a, b], [a, b) and (a, b) are all the same.
For example,

P(X ∈ [a, b]) = P(X = a) + P(X ∈ (a, b]) = P(X ∈ (a, b]).
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Construction of continuous random variables

Any random variable that arises in practice is discrete, because any
measurement is only up to a certain number of places of decimal.
Continuous random variables are idealized mathematical objects.
Typically, they arise as limits or infinite sums of discrete random
variables. The following is an example.

Let X1, X2, . . . be an infinite sequence of i.i.d. Ber(1/2) random
variables. Define

X =
∞

∑
i=1

2−iXi. (12)

Note that the series on the right is convergent (which implies that
X is well-defined), and the limit always lies in the interval [0, 1].
Moreover, note that the decimal expansion of X is 0.X1X2 . . ., which
implies that X can take on any value in [0, 1]. It is possible to show45

45 The proof goes as follows. Take
any positive integers n and k such
that k ≤ 2n. Then note that the event
(k− 1)/2n < X ≤ k/2n happens if and
only if X1, . . . , Xn take certain specific
values, and so

P((k− 1)/2n < X ≤ k/2n) = 2−n.

An element of [0, 1] is called a dyadic
rational if it is of the form k/2n for some
integers n and k. If a and b are dyadic
rationals, then the interval (a, b] is the
union of disjoint intervals of the form
((k − 1)/2n, k/2n]. Therefore by the
above equation,

P(a < X ≤ b) = b− a.

Approximating any a, b ∈ [0, 1] by
sequences of dyadic rationals approach-
ing a and b from above and below, it is
now easy to establish (13).

that for any 0 ≤ a ≤ b ≤ 1,

P(a < X ≤ b) = b− a. (13)

This implies that X is a continuous random variable with p.d.f.

f (x) =

1 if 0 ≤ x ≤ 1,

0 otherwise.

A random variable X with above p.d.f. is said to be uniformly dis-
tributed over [0, 1]. We will revisit uniform random variables later.

Given a probability density function, there is a standard mathe-
matical construction of a random variable with that p.d.f. This goes
as follows. Let f : R → [0, ∞) be a function whose integral is well-
defined46. Suppose further that46 The real meaning of this involves

measure theory. For now, you may
think of it as saying that the Riemann
integral of f over any interval is well-
defined.

∫ ∞

−∞
f (x)dx = 1.

Then it is possible to construct a random variable X with p.d.f. f .
Take Ω = R. For each A ⊆ Ω, define

P(A) =
∫

A
f (x)dx, (14)

provided that the integral makes sense47. Then P(A) ≥ 0 for every A,47 This makes sense only if A is a Borel
set, but that is beyond the scope of this
discussion.

P(∅) = 0, and P(Ω) = 1. Furthermore, for any disjoint A1, . . . , An,

P(A1 ∪ · · · ∪ An) =
n

∑
i=1

P(Ai),

and this identity holds even for countably infinite collections of dis-
joint events48. You can check that this property is sufficient to derive48 Again, this requires measure theory.
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all that we have proved until now about probabilities of events. Thus
it is mathematically consistent to imagine that there is an experiment
whose set of outcomes is Ω = R, and the probability of any event A
is given by (14). Now define X : Ω→ R and X(ω) = ω. Then for any
event A,

P(X ∈ A) = P({ω : X(ω) ∈ A}) = P(A) =
∫

A
f (x)dx.

This shows that f is the p.d.f. of X.
Here are three types of continuous random variables that com-

monly arise in applications.

• Uniform random variables: Given −∞ < a < b < ∞, we say that
X ∼ Uni f orm[a, b] (or Uni f [a, b]) if the p.d.f. of X is

f (x) =

1/(b− a) if x ∈ [a, b],

0 otherwise.

• Exponential random variables: Given λ > 0, we say that X ∼
Exponential(λ) (or Exp(λ)) if the p.d.f. of X is

f (x) =

λe−λx if x ≥ 0,

0 otherwise.

The Exp(1) distribution is sometimes called the standard exponen-
tial distribution.

• Normal random variables: Given µ ∈ R and σ > 0, we say that
X ∼ Normal(µ, σ2) (or N(µ, σ2)) if the p.d.f. of X is

f (x) =
1√
2πσ

e−(x−µ)2/2σ2
.

The N(0, 1) distribution is sometimes called the standard normal
distribution. Normal random variables are also called Gaussian
random variables. The normal p.d.f. is famously known as the
bell-shaped curve, because, as the name suggests, its graph is
shaped like a bell. A normal random variable with parameters µ

and σ2 is said to be centered if µ = 0.

It is easy to verify that the probability density functions for expo-
nential and uniform random variables indeed integrate to 1 when
integrated over the whole real line. This is not obvious for the normal
p.d.f. The proof goes as follows. First, observe that by the change of
variable y = (x− µ)/σ,∫ ∞

−∞

1√
2πσ

e−(x−µ)2/2σ2
dx =

∫ ∞

−∞

1√
2π

e−y2/2dy.
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Let I denote the integral on the right. Then

I2 =

(∫ ∞

−∞

1√
2π

e−x2/2dx
)(∫ ∞

−∞

1√
2π

e−y2/2dy
)

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2dxdy.

Now recall the use of polar coordinates to evaluate integrals over R2:
For any f : R2 → R,∫ ∞

−∞

∫ ∞

−∞
f (x, y)dxdy =

∫ ∞

0

∫ 2π

0
f (r cos θ, r sin θ)rdθdr.

Applying this to the function f (x, y) = e−(x2+y2)/2, we get

I2 =
1

2π

∫ ∞

0

∫ 2π

0
e−r2/2rdθdr

=
∫ ∞

0
e−r2/2rdr = 1.

Thus, the p.d.f. of a normal random variable indeed integrates to 1.

Cumulative distribution function

The cumulative distribution function (c.d.f.) of a continuous random
variable X is defined just like that of a discrete random variable, that
is,

F(x) = P(X ≤ x).

Note that
F(x) = P(−∞ < X ≤ x) =

∫ x

−∞
f (y)dy.

By the fundamental theorem of calculus, this implies that

f (x) = F′(x),

where F′ is the derivative of F.
Conversely, if the c.d.f. F of a random variable X is differentiable,

then for any −∞ ≤ a ≤ b ≤ ∞,

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a)

= F(b)− F(a)

=
∫ b

a
F′(x)dx,

which shows that X is a continuous random variable with p.d.f. F′.
This fact is sometimes useful for computing probability density func-
tions, such as in the following example. Let X ∼ Uni f [0, 1] and
Y = X2. What is the p.d.f. of Y? First, note that Y can only take
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values in [0, 1], which implies that the p.d.f. must be 0 outside this
interval. Take any y ∈ [0, 1]. Then the c.d.f. of Y at y is

P(Y ≤ y) = P(X2 ≤ y) = P(X ≤ √y)

=
∫ √y

0
dx =

√
y.

Therefore the p.d.f. of Y at y is

d
dy
√

y =
1

2
√

y
.

The above method generalizes to any monotone function of a contin-
uous random variable. This is the topic of the next section.

Change of variable formula

Let X be a continuous random variable with p.d.f. f . Let u : R → R

be a strictly increasing or decreasing function. Let Y = u(X). We
will now calculate the p.d.f. of Y. Since u is a strictly increasing or
decreasing function, it has an inverse49. Let us call it v, so that X = 49 The inverse function, u−1, has the

property that u−1(u(x)) = x.v(Y). Moreover, if u is increasing then v is also increasing, and if u is
decreasing then v is decreasing. Suppose that u and v are increasing,
and also that they are differentiable. Then for any y,

P(Y ≤ y) = P(v(Y) ≤ v(y)) = P(X ≤ v(y)) = F(v(y)),

where F is the c.d.f. of X. Therefore the p.d.f. of Y is

d
dy

F(v(y)) = F′(v(y))v′(y) = f (v(y))v′(y).

If u and v are decreasing, then a similar argument shows that the
p.d.f. of Y is

− f (v(y))v′(y).

Combining the two scenarios, we see that whenever u is strictly
monotone and v = u−1, and v is differentiable, the p.d.f. of Y is

g(y) = f (v(y))|v′(y)|. (15)

This is known as the change of variable formula for probability den-
sity functions. We have seen one example of this earlier. Here is
another. Let X ∼ Uni f [0, 1], and Y = − log X. The range of pos-
sible values of Y is [0, ∞). Since X = e−Y and the p.d.f. of X is 1
everywhere on [0, 1], the change of variable formula implies that the
p.d.f. of Y on [0, ∞) is

g(y) =
∣∣∣∣ d
dy

e−y
∣∣∣∣ = e−y.
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In other words, Y ∼ Exp(1).
As a second example, let X ∼ Exp(λ) and Y = αX. Then X =

v(Y), where v(y) = y/α. Note that v′(y) = 1/α for all y. Therefore
the p.d.f. of Y is

g(y) =
λ

α
e−λy/α.

Thus, Y ∼ Exp(λ/α).
Similarly, if X ∼ N(µ, σ2), and Y ∼ α + βX, the change of variable

formula implies that the p.d.f. of Y is

g(y) =
1√

2πσ|β|
e−(y−α−βµ)2/2σ2β2

,

which shows that

Y ∼ N(α + βµ, β2σ2). (16)

In particular, this shows that if X ∼ N(0, 1), then α + βX ∼ N(α, β2).
The argument used to derive (15) can be extended to functions that

are not monotone. For example, let X ∼ N(0, 1), and Y = |X|. Since
Y is a nonnegative random variable, its p.d.f. is zero at any negative
y. For any y ≥ 0,

P(Y ≤ y) = P(|X| ≤ y) = P(−y ≤ X ≤ y)

=
∫ y

−y

1√
2π

e−x2/2dx

=
∫ y

0

1√
2π

e−x2/2dx +
∫ 0

−y

1√
2π

e−x2/2dx.

If we make the change of variable z = −x in the second integral, it
becomes ∫ y

0

1√
2π

e−z2/2dz.

Thus,

P(Y ≤ y) = 2
∫ y

0

1√
2π

e−x2/2dx.

Differentiating this, we see that the p.d.f. of Y at y is

2√
2π

e−y2/2.

If we had naively applied (15) to this example, we would have missed
the factor 2.

Joint probability density function

Suppose that X1, . . . , Xn are continuous random variables defined
on the same sample space. The n-tuple X = (X1, . . . , Xn) is called a
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random vector. Note that X is a function from the sample space Ω
into Rn. The probability density function of X, also called the joint
p.d.f. of X1, . . . , Xn, is a function f : Rn → [0, ∞) such that for any50 50 Again, we need A to be a Borel subset

of Rn.subset A ⊆ Rn,

P(X ∈ A) =
∫

A
f (x1, . . . , xn)dx1 · · · dxn.

Note that the integral of f over the whole of Rn must be 1. Con-
versely, given any function f : Rn → [0, ∞) such that∫

Rn
f (x1, . . . , xn)dx1 · · · dxn = 1,

it is possible to construct a random vector X with p.d.f. f . This is
achieved by following exactly the same argument as for random
variables.

If we are given the joint density of X1, . . . , Xn, it is possible to
calculate the probability density functions of the individual random
variables X1, . . . , Xn using the following simple method51. If f is the 51 This is the continuous analog of the

formula (3) for marginal probability
mass functions.

joint p.d.f. of X1, . . . , Xn, then for each i, the p.d.f. of Xi is given by

fi(x) =
∫

Rn−1
f (x1, . . . , xi−1, x, xi+1, . . . , xn)dx1 · · · dxi−1dxi+1 · · · dxn.

Let us verify this for i = 1. Take any B ⊆ R. Let A = B×Rn−1. Then

P(X1 ∈ B) = P(X ∈ A) (where X = (X1, . . . , Xn))

=
∫

A
f (x1, . . . , xn)dx1 · · · dxn

=
∫

B

(∫
Rn−1

f (x1, . . . , xn)dx2 · · · dxn

)
dx1

=
∫

B
f1(x1)dx1.

Thus, f1 must be the p.d.f. of X1.
For example, let X = (X1, X2) be a random vector that is uni-

formly distributed over the unit disk in R2, which means that for any
subset A of the unit disk, P(X ∈ A) is proportional to the area of A.
The proportionality constant must be 1/π, since the area of the unit
disk is π. Therefore, the p.d.f. f of X must be equal to 1/π every-
where inside the unit disk, and 0 outside. Let us now calculate the
p.d.f. f1 of X1. Note that X1 takes values in the interval [−1, 1]. For
any x in this interval,

f1(x) =
∫ ∞

−∞
f (x, x2)dx2.

Since f is zero outside the unit disk, the integrand in the above inte-
gral is zero if x2 >

√
1− x2 or x2 < −

√
1− x2. On the other hand,

inside this range, it is equal to 1/π. Thus52,

52 Since f1 must integrate to 1, this gives
a simple proof of the fact that∫ 1

−1

√
1− x2dx =

π

2
,

which is not entirely trivial to prove
directly.

f1(x) =
2
π

√
1− x2.
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Independence

Let X1, . . . , Xn be continuous random variables with joint p.d.f. f . Let
fi be the marginal p.d.f. of Xi, for i = 1, . . . , n. We say that X1, . . . , Xn

are independent if

f (x1, . . . , xn) = f1(x1) f2(x2) · · · fn(xn).

Let X1, . . . , Xn be independent, with joint density f and marginal
densities f1, . . . , fn as above. Take any subsets B1, . . . , Bn of the real
line. Let A = B1 × · · · × Bn. Then

P(X1 ∈ B1, . . . , Xn ∈ Bn) = P(X ∈ A) (where X = (X1, . . . , Xn))

=
∫

A
f (x1, . . . , xn)dx1 · · · dxn

=
∫

Bn

∫
Bn−1

· · ·
∫

B1

f1(x1) · · · fn(xn)dx1 · · · dxn

= P(X1 ∈ B1)P(X2 ∈ B2) · · · P(Xn ∈ Bn),

where the last line was obtained by integrating the variables one by
one.

Just as for joint p.m.f.’s of discrete random variables, if the joint
density of a random vector (X1, . . . , Xn) has the form

f (x1, . . . , xn) = h1(x1) · · · hn(xn)

where h1, . . . , hn are probability density functions on the real line,
then X1, . . . , Xn are independent and hi is the p.d.f. of Xi for each i.
The proof is similar to that of Proposition 5.

For example, consider a random vector X = (X1, X2) that is uni-
formly distributed on the square [0, 1]2. Then its p.d.f. is 1 inside the
square and 0 outside. So we can write the p.d.f. as

f (x1, x2) = f1(x1) f2(x2)

where both f1 and f2 are functions of one variable that are 1 inside
the interval [0, 1] and 0 outside. But this is the p.d.f. of a Uni f [0, 1]
random variable. Thus, X1 and X2 are independent Uni f [0, 1] ran-
dom variables.

On the other hand, consider the example of a random vector X =

(X1, X2) that is uniformly distributed in the unit disk. As noted in
the previous section, the p.d.f. f of X is 1/π inside the unit disk and
0 outside. On the other hand, we computed that the p.d.f. of X1 is

f1(x) =
2
π

√
1− x2

in the interval [−1, 1] and 0 outside. By a similar argument, the
p.d.f. f2 of X2 is also the same. Thus, f 6= f1 f2, and so X1 and X2

are not independent.
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Conditional probability density function

Let X and Y be two random variables with joint probability density
function f . Take any x ∈ R where f (x) > 0. The conditional proba-
bility density function of Y given X = x, which we denote by gx, is
defined as

gx(y) =
f (x, y)
f1(x)

,

where f1 is the marginal p.d.f. of X. The intuition is that if we take a
small ε, then

P(Y ∈ [y− ε, y + ε] |X ∈ [x− ε, x + ε])

=
P(Y ∈ [y− ε, y + ε], X ∈ [x− ε, x + ε])

P(X ∈ [x− ε, x + ε])

≈ (2ε)2 f (x, y)
2ε f1(x)

= 2εgx(y).

Just as for discrete random variables, the standard convention is to
denote the joint density of (X, Y) by fX,Y, the marginal densities of X
and Y by fX and fY, and the conditional density of Y given X = x by
fY|X=x. With this notation,

fY|X=x(y) =
fX,Y(x, y)

fX(x)
.

Consider the familiar example of a random vector (X, Y) distributed
uniformly on the unit disk D = {(x, y) : x2 + y2 ≤ 1}. We have seen
that

fX,Y(x, y) =

1/π if (x, y) ∈ D,

0 otherwise,

and

fX(x) =

 2
π

√
1− x2 if − 1 ≤ x ≤ 1,

0 otherwise.

Take any x ∈ (−1, 1). The above formulas show that the conditional
density of Y given X = x is given by

fY|X=x(y) =

 1
2
√

1−x2 if |y| ≤
√

1− x2,

0 otherwise.

In other words, given X = x, Y is uniformly distributed on the
interval [−

√
1− x2,

√
1− x2].

Given two random variables X and Y with joint density fX,Y and a
set A ⊆ R2, we can evaluate the conditional probability of the event
(X, Y) ∈ A given X = x using the formula

P((X, Y) ∈ A|X = x) =
∫
{y:(x,y)∈A}

fY|X=x(y)dy.
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This is consistent with a version of the law of total probability for
continuous variables:

P((X, Y) ∈ A) =
∫

A
fX,Y(x, y)dydx

=
∫

A
fY|X=x(x, y) fX(x)dydx

=
∫ ∞

−∞

∫
{y:(x,y)∈A}

fY|X=x(x, y) fX(x)dydx

=
∫ ∞

−∞
P((X, Y) ∈ A|X = x) fX(x)dx.

There are obvious generalizations of this formula to larger numbers
of variables and vectors.

Multivariate change of variable formula

Let X = (X1, . . . , Xn) be a continuous random vector with p.d.f. f ,
and let Y = u(X), where u : Rn → Rn is a smooth53 injective5453 Infinitely differentiable.

54 One-to-one. function whose inverse is also smooth. Let v = u−1 be the inverse of
u. The multivariate change of variable formula is a formula for the
p.d.f. of Y in terms of the p.d.f. of X and the Jacobian of the map v.

Let v1, . . . , vn denote the n components of the map v. Recall that
the Jacobian matrix of v is the matrix-valued function

J(y) =


∂v1
∂y1

· · · ∂v1
∂yn

...
. . .

...
∂vn
∂y1

· · · ∂vn
∂yn

 .

The Jacobian determinant, or simply the Jacobian, of v is the deter-
minant of the Jacobian matrix. The multivariate change of variable
formula says that the p.d.f. of Y at a point y ∈ Rn is

g(y) = f (v(y))|det J(y)|.

Note that this is a generalization of the univariate formula (15). We
proved the univariate formula using the cumulative distribution
function. The multivariate formula has a different proof (which is
also applicable for the univariate case). It goes as follows. Take any
A ⊆ Rn. Let

B = v(A) = {v(x) : x ∈ A}.

Then

P(Y ∈ A) = P(v(Y) ∈ v(A)) = P(X ∈ B)

=
∫

B
f (x)dx (where dx = dx1 · · · dxn).
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Now let us apply the change of variable y = u(x) to the above inte-
gral, which is the same as x = v(y). The change of variable formula
for multiple integrals55 gives us 55 If you do not want to apply that or

do not remember what it is, here is an
alternative sketch of the proof. Let A be
a small ball containing y. Then P(Y ∈
A) ≈ vol(A)g(y), where vol(A) denotes
the volume of A. Let B = v(A), so that
P(Y ∈ A) = P(X ∈ B). But in the
small ball A, v behaves like the linear
map w(z) = v(y) + J(y)(z − y), by
Taylor approximation. It is a standard
fact from linear algebra (see below) that
multiplication by a matrix M multiplies
the volume of a region by |det M|.
Thus, vol(B) ≈ |det J(y)|vol(A).
To complete the proof, notice that
P(X ∈ B) ≈ vol(B) f (x), since B is a
small region containing x.

For the linear algebra fact, let UDVT

be the singular value decomposition
of M, where U and V are orthogonal,
and D is diagonal. The actions of VT

and U preserve volumes, and it is easy
to see that multiplication by D changes
volume by det D. But det D = |det M|.

∫
B

f (x)dx =
∫

A
f (v(y))|det J(y)|dy.

Since this holds for any A, we conclude that the p.d.f. of Y must be
f (v(y))|det J(y)|.

Applications of the change of variable formula

Let us now work a number of important applications of the mul-
tivariate change of variable formula. Let X and Y be a pair of con-
tinuous random variables defined on the same sample space, with
joint p.d.f. f . The change of variable formula allows us to calculate
the probability density functions of X + Y, XY and X/Y. There is a
general method of solving such problems, which will become clear
soon.

First, let u(x, y) = (x + y, y). Let (Z, W) = u(X, Y). That is,
Z = X + Y and W = Y. The plan is to first calculate the p.d.f. of
(Z, W) using the change of variable formula, and then compute the
marginal p.d.f. of Z.

If (z, w) = (x + y, y), then x = z− w and y = w. Thus, v(z, w) =

(z− w, w) is the inverse of u. The Jacobian matrix of v is

J(z, w) =

(
1 −1
0 1

)
.

Thus, the p.d.f. of (Z, W) is

g(z, w) = f (v(z, w))|det J(z, w)| = f (z− w, w).

Consequently, the p.d.f. of Z = X + Y is

h(z) =
∫ ∞

−∞
g(z, w)dw =

∫ ∞

−∞
f (z− w, w)dw. (17)

Note that if X and Y were discrete random variables, then the for-
mula for the p.m.f. of Z would be56 56 By the law of total probability.

P(Z = z) = ∑
w

P(X = z− w, Y = w),

which is a discrete version of (17).
Let us now turn our attention to XY. Let Z = XY. If X and Y were

discrete, the p.m.f. of Z would be given by

P(Z = z) = ∑
w

P(X = z/w, Y = w).
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This may lead us to guess that in the continuous case, the p.d.f. of Z
at a point z is given by the formula∫ ∞

−∞
f (z/w, w)dw.

However, this is not the case! The p.d.f. of Z is actually

h(z) =
∫ ∞

−∞

1
|w| f (z/w, w)dw. (18)

This shows that one should be careful about guessing results about
continuous random variables from analogous results for discrete
random variables. Let us now prove that h is indeed the p.d.f. of
Z. The procedure is as before. Let u(x, y) = (xy, y) and (Z, W) =

u(X, Y). If u(x, y) = (z, w), then x = z/w and y = w. Thus, v(z, w) =

(z/w, w) is the inverse of u. The Jacobian matrix of v is

J(z, w) =

(
1/w −z/w2

0 1

)
.

The main difference now is that det J is not constant. By the change
of variable formula, we get that the p.d.f. of (Z, W) is

g(z, w) = f (v(z, w))|det J(z, w)| = 1
|w| f (z/w, w).

This shows that the p.d.f. of Z = XY is given by the function h
displayed in (18).

As a final example, let us compute the p.d.f. of X/Y. We proceed
exactly as in the previous two examples. Let u(x, y) = (x/y, y) and
(Z, W) = u(X, Y). The inverse function is v(z, w) = (zw, w), and its
Jacobian matrix is

J(z, w) =

(
w z
0 1

)
.

Thus, the p.d.f. of (Z, W) is g(z, w) = |w| f (zw, w), and so the p.d.f. of
Z = X/Y is

h(z) =
∫ ∞

−∞
|w| f (zw, w)dw. (19)

Now let X and Y be two independent random variables with p.d.f.’s f
and g. Let Z = X + Y. Then by the formula (17), the p.d.f. of Z is

h(z) =
∫ ∞

−∞
f (z− w)g(w)dw.

The p.d.f. h is called the convolution of f and g, and often denoted
by f ? g.
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Example: Sum of two independent centered normals

Let X ∼ N(0, a2) and Y ∼ N(0, b2) be independent centered normal
random variables. Then by (17), the p.d.f. of Z = X + Y is

h(z) =
1

2πab

∫ ∞

−∞
e−(z−w)2/2a2

e−w2/2b2
dw

=
1

2πab

∫ ∞

−∞
e−(b

2z2−2b2zw+(b2+a2)w2)/2a2b2
dw

=
e−z2/2a2

2πab

∫ ∞

−∞
e−((b

2+a2)w2−2b2zw)/2a2b2
dw.

Now note that57 57 This is ‘completing the square’.

(b2 + a2)w2 − 2b2zw = (b2 + a2)

(
w− b2z

b2 + a2

)2

− b4z2

b2 + a2 .

Plugging this into the previous expression, we get

h(z) =
e−z2/2(a2+b2)

2πab

∫ ∞

−∞
e−(b

2+a2)(w−b2z/(b2+a2))2/2a2b2
dw.

Substituting

x =

√
b2 + a2

ab

(
w− b2z

b2 + a2

)
in the integral, we get

h(z) =
e−z2/2(a2+b2)

2πab
ab√

b2 + a2

∫ ∞

−∞
e−x2/2dx.

But we know that the integral on the right equals
√

2π. Thus,

h(z) =
1√

2π(a2 + b2)
e−z2/2(a2+b2).

But this is the p.d.f. of N(0, a2 + b2). Thus, Z ∼ N(0, a2 + b2).
The above result can be extended by induction to arbitrary linear

combinations of independent normal random variables.

Proposition 11. Let X1, . . . , Xn be independent normal random variables,
with Xi ∼ N(µi, σ2

i ). Take any real numbers a0, . . . , an and let Y =

a0 + a1X1 + · · ·+ anXn. Then

Y ∼ N(a0 + a1µ1 + · · ·+ anµn, a2
1σ2

1 + · · ·+ a2
nσ2

n).

Proof. We have already seen the case n = 1 in equation (16). Let us
now prove it for n = 2. By equation (16), ai(Xi − µi) ∼ N(0, a2

i σ2
i ) for

each i. Thus, by the result proved above,

a1(X1 − µ1) + a2(X2 − µ2) ∼ N(0, a2
1σ2

1 + a2
2σ2

2 ).
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Therefore again by equation (16),

a0 + a1X1 + a2X2 = a0 + a1µ1 + a2µ2 + a1(X1 − µ1) + a2(X2 − µ2)

∼ N(a0 + a1µ1 + a2µ2, a2
1σ2 + a2

2σ2
2 ).

Now suppose that this claim holds for n − 1 variables. Under this
assumption, we will now prove it for n variables58. Let Z = a0 +58 In case you have not seen it before,

this is a general proof technique, known
as proof by induction.

a1X1 + · · ·+ an−1Xn−1 and W = anXn, so that Y = Z + W. Since the
result holds for n− 1 variables (by assumption),

Z ∼ N(a0 + a1µ1 + · · ·+ an−1µn−1, a2
1σ2

1 + · · ·+ a2
n−1σ2

n−1).

Also, by equation (16), W ∼ N(anµn, a2
nσ2

n). Therefore, applying the
case n = 2, we get the desired conclusion for Y.

Example: Ratio of two independent centered normals

Let X ∼ N(0, a2) and Y ∼ N(0, b2) be independent centered normal
random variables. Let Z = X/Y. By equation (19), the p.d.f. of Z is

h(z) =
1

2πab

∫ ∞

−∞
|w|e−(zw)2/2a2

e−w2/2b2
dw.

Since the integrand is an even function of w, the integral from −∞ to
∞ equals two times the integral from 0 to ∞. Thus,

h(z) =
1

πab

∫ ∞

0
we−(z

2b2+a2)w2/2a2b2
dw

=
ab

π(z2b2 + a2)

∫ ∞

0

d
dw

(e−(z
2b2+a2)w2/2a2b2

)dw

=
ab

π(z2b2 + a2)
=

(a/b)
π(z2 + (a/b)2)

.

A random variable with p.d.f.

γ

π(x2 + γ2)

is called a Cauchy(γ) random variable. Thus, X/Y ∼ Cauchy(a/b).
The Cauchy(1) distribution is called the standard Cauchy distri-
bution. The above calculation shows that the ratio of two standard
normal random variables is a standard Cauchy random variable.

Example: Gamma random variables

Let X1, . . . , Xn be i.i.d. Exp(λ) random variables. We will now show
that the p.d.f. of X1 + · · · + Xn is the function that is zero on the
negative axis and equals

λnxn−1e−λx

(n− 1)!
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at x ≥ 0. A random variable with this p.d.f. is called a Gamma(n, λ)

random variable59. 59 Note that it is not obvious that the
above function integrates to 1. One way
to show that is by using the fact that it
is the p.d.f. of a random variable, as we
will show soon. Another way is to use
repeated integrations by parts.

The above claim is obviously true for n = 1. Let us assume that
it holds for a sum of n− 1 variables. Let fn denote the p.d.f. of X1 +

· · · + Xn. Then obviously fn(x) = 0 if x < 0, since the random
variables are nonnegative. For x ≥ 0, we have60

60 Here we are implicitly using the
fact that X1 + · · · + Xn−1 and Xn are
independent. To see this, let Y =
X1 + · · · + Xn. Take any A, B ⊆ R,
and write P(Y ∈ A, Xn ∈ B) as
P((X1, . . . , Xn) ∈ D) for some suitable
set D ⊆ Rn, and then evaluate the latter
as an integral. The integral will factor
into a product of two integrals, one of
which will equal P(Y ∈ A) and the
other will equal P(X ∈ B).

fn(x) =
∫ ∞

−∞
f1(x− y) fn−1(y)dy.

Now note that f1(x− y) = 0 if y > x, and fn−1(y) = 0 if y < 0. Thus,

fn(x) =
∫ x

0
f1(x− y) fn−1(y)dy

=
∫ x

0
λe−λ(x−y) λn−1yn−2e−λy

(n− 2)!
dy

=
λne−λx

(n− 2)!

∫ x

0
yn−2dy

=
λnxn−1e−λx

(n− 1)!
.

This completes the induction step and proves the claim.





More about continuous random vari-
ables

Expected value

The expected value (or expectation, or mean) of a continuous random
variable X with p.d.f. f is defined as61 61 Roughly, the idea behind this defi-

nition is as follows. Take some small
ε, and discretize X by defining a new
random variable Xε which takes value
kε if X ∈ ((k− 1)ε, kε] for some k ∈ Z.
Then

E(Xε) =
∞

∑
k=−∞

kεP(Xε = kε)

=
∞

∑
k=−∞

kε
∫ kε

(k−1)ε
f (x)dx.

As ε → 0, Xε → X and the last line
tends to

∫ ∞
−∞ x f (x)dx.

E(X) =
∫ ∞

−∞
x f (x)dx,

provided the integral is absolutely convergent62. For example, if

62 That is, ∫ ∞

−∞
|x| f (x)dx < ∞.

In other words, we need E|X| < ∞.

X ∼ Uni f [a, b], then

E(X) =
1

b− a

∫ b

a
xdx =

1
b− a

b2 − a2

2
=

a + b
2

.

This makes sense, because a random variable which is uniformly
distributed on the interval [a, b] should have the midpoint of the
interval as its long-term average value.

If X ∼ Exp(λ), then using integration by parts,

E(X) =
∫ ∞

0
λxe−λxdx

=
[
−xe−λx]∞

0 +
∫ ∞

0
e−λxdx =

1
λ

.

The parameter λ is sometimes called the rate. The above calculation
shows that the reciprocal of the rate is the mean of an exponential
random variable.

As our third example, let X ∼ N(µ, σ2). Then

E(X) =
∫ ∞

−∞

xe−(x−µ)2/2σ2

√
2πσ

dx

=
∫ ∞

−∞

(x− µ)e−(x−µ)2/2σ2

√
2πσ

dx +
∫ ∞

−∞

µe−(x−µ)2/2σ2

√
2πσ

dx

=
∫ ∞

−∞

(x− µ)e−(x−µ)2/2σ2

√
2πσ

dx + µ

=
∫ ∞

−∞

ye−y2/2σ2

√
2πσ

dy + µ.
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But the integrand in the last line is an odd function of y, and the
integral converges absolutely, So the value of the integral must be
zero. Thus, E(X) = µ. For this reason, the parameter µ is called
the mean of the N(µ, σ2) distribution. We will see later that σ2 is the
variance.

As our final example, let us consider X ∼ Cauchy(γ). Then

E(X) =
∫ ∞

−∞

γx
π(x2 + γ2)

dx.

Since the integrand is an odd function of x, you may think that the
expected value is zero. However, note that the integral is not abso-
lutely convergent. For this reason, E(X) is considered to be undefined
for a Cauchy random variable.

Properties of expectation

Let X1, . . . , Xn be continuous random variables with joint proba-
bility density function f . Let g : Rn → R be a function and let
Y = g(X1, . . . , Xn). Then, just as for discrete random variables
(Proposition 6), we have the following simple method for calculat-
ing E(Y).

Proposition 12. Let Y be as above. Then

E(Y) =
∫

Rn
g(x1, . . . , xn) f (x1, . . . , xn)dx1 · · · dxn.

Proof. Let h be the p.d.f. of Y. Take any ε > 0. Let

Aε = ∑
k∈Z

kεP((k− 1)ε < Y ≤ kε).

Then

E(Y)− Aε =
∫ ∞

−∞
xh(x)dx− ∑

k∈Z

kε
∫ kε

(k−1)ε
h(x)dx

= ∑
k∈Z

∫ kε

(k−1)ε
(x− kε)h(x)dx.

We now compute an upper bound on the absolute value of the above
difference, applying the triangle inequality63 and the fact that the63 That is, the inequality

|a1 + a2 + · · · | ≤ |a1|+ |a2|+ · · · . absolute value of an integral is less than or equal to the integral of
the absolute value64:

64 Proved by applying the triangle
inequality to Riemann sums in the
definition of integral. |E(Y)− Aε| ≤ ∑

k∈Z

∫ kε

(k−1)ε
|x− kε|h(x)dx

≤ ε ∑
k∈Z

∫ kε

(k−1)ε
h(x)dx = ε

∫ ∞

−∞
h(x)dx = ε. (20)
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For each k ∈ Z, let

Sk = {(x1, . . . , xn) : g(x1, . . . , xn) ∈ ((k− 1)ε, kε]}.

Then Y ∈ ((k− 1)ε, kε] if and only if (X1, . . . , Xn) ∈ Sk. Thus,

Aε = ∑
k∈Z

kε
∫

Sk

f (x1, . . . , xn)dx1 · · · dxn.

So if we put

I =
∫

Rn
g(x1, . . . , xn) f (x1, . . . , xn)dx1 · · · dxn,

then

I − Aε = ∑
k∈Z

∫
Sk

(g(x1, . . . , xn)− kε) f (x1, . . . , xn)dx1 · · · dxn.

Proceeding as before using triangle inequality, we get

|I − Aε| ≤ ε. (21)

Combining (20) and (21), we get |E(Y)− I| ≤ 2ε. But ε is arbitrary. So
taking ε→ 0, we get E(Y) = I.

An immediate consequence of the above proposition is that expec-
tation is linear for continuous random variables, just as it is in the
discrete case65. Similarly, another consequence is that the expecta- 65 Prove this, if in doubt.

tion of a product of independent continuous random variables is the
product of the expectations.

As an application, let us compute the mean of a Gamma(n, λ) ran-
dom variable. Recall that if X1, . . . , Xn are i.i.d. Exp(λ) random vari-
ables, then X1 + · · ·+ Xn ∼ Gamma(n, λ). Since we calculated that
the expected value of an Exp(λ) random variable is 1/λ, it follows
by linearity of expectation that the expected value of a Gamma(n, λ)

random variable is n/λ.

Variance

The variance of a continuous random variable is defined just like the
variance of a discrete random variable:

Var(X) = E(X2)− (E(X))2.

Similarly, covariance of two continuous random variables X and Y is
defined as

Cov(X, Y) = E(XY)− E(X)E(Y)

All the properties of variance and covariance discussed previously
continue to hold for continuous random variables. In particular:
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• Var(X) = E[(X− E(X))2].

• Var(bX + c) = b2Var(X).

• Covariance is bilinear.

• If X and Y are independent, then Cov(X, Y) = 0.

• Var(∑i Xi) = ∑i ∑j Cov(Xi, Xj).

• If X1, . . . , Xn are independent, Var(∑i Xi) = ∑i Var(Xi).

Let us now calculate the variances of the continuous random vari-
ables introduced earlier. We will be using the expected values com-
puted earlier, so please revisit those if you do not remember. First, let
X ∼ Uni f [a, b]. Then

E(X2) =
1

b− a

∫ b

a
x2dx =

b3 − a3

3(b− a)
=

1
3
(b2 + ab + a2).

Thus,

Var(X) =
1
3
(b2 + ab + a2)− b2 + 2ab + a2

4

=
(b− a)2

12
.

Next, let X ∼ Exp(λ). Then

E(X2) =
∫ ∞

−∞
λx2e−λxdx

=
[
−x2e−λx]∞

0 +
∫ ∞

0
2xe−λxdx

=
2
λ

E(X) =
2

λ2 .

Thus,

Var(X) =
2

λ2 − (E(X))2 =
1

λ2 .

Since the variance of a sum of independent random variables is
the sum of the variances, this also shows that the variance of a
Gamma(n, λ) random variable is n/λ2.

Finally, let X ∼ N(µ, σ2). Then

Var(X) = E[(X− E(X))2] = E[(X− µ)2]

=
∫ ∞

−∞

(x− µ)2e−(x−µ)2/2σ2

√
2πσ

dx.

Putting y = (x− µ)/σ, we get

Var(X) = σ2
∫ ∞

−∞

y2e−y2/2
√

2π
dy.

It is an easy exercise to show using integration by parts that the inte-
gral equals 1. Thus, Var(X) = σ2.
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Inequalities and laws of large numbers

The results from the chapter of laws of large numbers are all valid for
continuous random variables. The proofs are exactly the same, with
probability mass functions replaced by probability density functions
at the appropriate places. In particular:

• If X is a nonnegative continuous random variable, then E(X) ≥ 0.

• If X and Y are continuous random variables such that X ≥ Y
always, then E(X) ≥ E(Y). (This result also holds if one variable is
continuous and the other discrete.)

• Similarly, when p ≥ 1, the inequality |E(X)| ≤ (E|X|p)1/p holds
for continuous random variables.

• Markov’s and Chebyshev’s inequalities hold for continuous ran-
dom variables.

• The weak law of large numbers holds for continuous random
variables, as well as the result that E(Xn) → c and Var(Xn) → 0
implies Xn → c in probability.

The tail integral formula for expectation

Let X be a nonnegative continuous random variable with finite ex-
pected value. The tail integral formula for E(X) says that

E(X) =
∫ ∞

0
P(X ≥ t)dt.

To prove this66, let F be the c.d.f. and f = F′ be the p.d.f. of X. Let us

66 There is a measure-theoretic proof of
this identity that requires no assump-
tions on X other than that X ≥ 0. In
particular, it is not required that X is
continuous. The proof goes as follows.
Observe that

X =
∫ X

0
dt =

∫ ∞

0
1{X≥t}dt.

Then there is a measure-theoretic result,
known as the monotone convergence
theorem, which says that we can switch
the order of expectation and integration
below, to get

E(X) = E
(∫ ∞

0
1{X≥t}dt

)
=
∫ ∞

0
E({X ≥ t})dt

=
∫ ∞

0
P(X ≥ t)dt.

assume that F(t) approaches 1 so fast as t → ∞ that (1− F(t))t → 0.
Since X is a continuous random variable, P(X ≥ t) = P(X > t) =

1− F(t). Therefore using integration by parts, we get∫ ∞

0
P(X ≥ t)dt =

∫ ∞

0
(1− F(t))dt

=
[
(1− F(t))t

]∞
0 +

∫ ∞

0
t f ( f )dt = E(X).

There is a generalization of this identity, which says that if g :
[0, ∞) → R is a differentiable function, then under mild conditions
on g,

E(g(X)) = g(0) +
∫ ∞

0
g′(t)P(X ≥ t)dt.
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Mean vector and covariance matrix

Let X = (X1, . . . , Xn) be an n-dimensional random vector (discrete
or continuous). The mean vector of X, denoted by E(X), is the n-
dimensional vector whose ith component is E(Xi). If A is an m × n
matrix and Y = AX (treating X as a column vector), then Y is an
m-dimensional random vector, and linearity of expectation implies
that E(Y) = AE(X).

The covariance matrix of X, sometimes denoted by Cov(X), is the
n× n matrix Σ with (i, j)th entry is

σij = Cov(Xi, Xj).

Note that Σ is a symmetric matrix, since Cov(Xi, Xj) = Cov(Xj, Xi).
We claim that Σ is a positive semidefinite (p.s.d.) matrix, meaning
that uTΣu ≥ 0 for every u ∈ Rn. (Here and later, we treat vectors as
column vectors, and uT denotes the transpose of u.)

To see this, let u1, . . . , un denote the components of a vector u, and
note that

uTΣu =
n

∑
i,j=1

uiujσij

=
n

∑
i,j=1

uiujCov(Xi, Xj) = Var
( n

∑
i=1

uiXi

)
.

Since the variance of any random variable is nonnegative, this proves
the claim.

Now take any m× n matrix A, and let Y = AX. Then Y is an m-
dimensional random vector. We claim that the covariance matrix of
Y is AΣAT . To see this, let aij denote the (i, j)th entry of A, and note
that for any i and j,

Cov(Yi, Yj) = Cov
( n

∑
k=1

aikXk,
n

∑
l=1

ajlXl

)
=

n

∑
k=1

n

∑
l=1

aikajlCov(Xk, Xl)

=
n

∑
k=1

n

∑
l=1

aikajlσkl .

The double sum in the last line is the (i, j)th entry of AΣAT .

Normal random vectors

Let X1, . . . , Xn be i.i.d. standard normal random variables. The
random vector X = (X1, . . . , Xn) is called a standard normal (or
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Gaussian) random vector. Note that the p.d.f. of X at a point x =

(x1, . . . , xn) is

f (x) =
1

(2π)n/2 e−
1
2 ∑n

i=1 x2
i =

1
(2π)n/2 e−

1
2 ‖x‖

2
,

where ‖x‖ is the Euclidean norm of x. Now take any nonsingular
n× n matrix A, and let Y = AX. Since the covariance matrix of X is
simply the identity matrix I, the covariance matrix of Y is Σ = AAT .
Let us now derive the p.d.f. of Y. Note that X = A−1Y. This is a
linear transformation, whose Jacobian matrix is A−1. Therefore by
the change of variable formula, the p.d.f. of Y at a point y is

g(y) = f (A−1y)|det A−1|.

Now note that

f (A−1y) =
1

(2π)n/2 e−
1
2 (A−1y)T(A−1y)

=
1

(2π)n/2 e−
1
2 yT(A−1)T A−1y

=
1

(2π)n/2 e−
1
2 yTΣ−1y.

Also, note that

det Σ = det(AAT) = det(A)det(AT) = (det A)2,

and so
|det A−1| = |(det A)−1| = (det Σ)−1/2.

Thus,

g(y) =
1

(2π)n/2(det Σ)1/2 e−
1
2 yTΣ−1y.

Next, take any µ ∈ Rn and let Z = µ + Y = µ + AX. Then again by
the change of variable formula, it is easy to show that the p.d.f. of Z
at a point z is given by

h(z) = g(z− µ) =
1

(2π)n/2(det Σ)1/2 e−
1
2 (z−µ)TΣ−1(z−µ).

The random variable Z has covariance matrix Σ and mean vector µ,
and its p.d.f. is given by the above formula, which involves only µ

and Σ as parameters. We say that Z is a normal random vector with
mean µ and covariance matrix Σ, and write Z ∼ N(µ, Σ). If Z1, . . . , Zn

are the components of Z, we say that Z1, . . . , Zn are jointly normal.
The distribution of Z is called the multivariate normal distribution
with mean µ and covariance matrix Σ.

Recall that any positive definite matrix Σ can always be written
as AAT for some nonsingular matrix A. From this, it follows that
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given any positive definite matrix Σ and any vector µ (of the same
dimension), the N(µ, Σ) distribution is well-defined since it arises as
the distribution of µ + AX, where X is a standard normal random
vector.

Since a normal random vector is by definition a linear transforma-
tion of a standard normal random vector, it follows that any linear
transformation of a normal random vector is again a normal random
vector (with appropriate mean and covariance matrix). To be pre-
cise, if Z ∼ N(µ, Σ) and Z′ = ν + BZ for some ν ∈ Rn and n × n
nonsingular matrix B, then Z′ ∼ N(ν + Bµ, BΣBT).

What if we multiply a standard normal random vector by a rect-
angular, instead of square, matrix? We claim that the result is still
a normal random vector. Let X be an n-dimensional standard nor-
mal random vector, and let A be an m× n matrix of full rank, where
m < n. Let H be the subspace of Rn spanned by the rows of A, so
that dim H = m. Let u1, . . . , un−m be an orthonormal basis of the
orthogonal complement of H. Produce an n× n matrix B by adding
u1, . . . , un−m as row vectors below the rows of A. Let Y = AX and
Z = BX, so that Y consists of the first m elements of Z.

Note that Z ∼ N(0, BBT). But by construction of B,

BBT =

(
Σ 0
0 I

)
,

where Σ = AAT , and I is the identity matrix of order n − m. The
determinant of the above matrix is equal to det Σ, and its inverse is(

Σ−1 0
0 I

)
.

Thus, the p.d.f. of Z at a point z ∈ Rn is

f (z) =
1

(2π)n/2(det Σ)1/2 e−
1
2 yTΣ−1y− 1

2 wTw,

where yT = (z1, . . . , zm) and wT = (zm+1, . . . , zn). To obtain the
p.d.f. of Y, we have to integrate out w from the above density. But
this is easily accomplished, since the variables y and w are separated
in the exponent. Integrating out, we get that Y ∼ N(0, Σ).

An important consequence of the above result is that if a collection
of random variables is jointly normal, any subcollection is also jointly
normal.

Another very important property of jointly normal random vari-
ables is that independence can be easily verified by checking whether
covariances are zero.

Proposition 13. Let X1, . . . , Xm, Y1, . . . , Yn be jointly normal random
variables. Suppose that Cov(Xi, Yj) = 0 for each i and j. Then the random
vectors (X1, . . . , Xm) and (Y1, . . . , Yn) are independent67.

67 In the sense that the joint density of
(X1, . . . , Xm, Y1, . . . , Yn) is the product
of the densities of (X1, . . . , Xm) and
(Y1, . . . , Yn).
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Proof. Let Σ be the covariance matrix of the random vector Z =

(X1, . . . , Xm, Y1, . . . , Yn). By the given condition, Σ has the form(
Σ1 0
0 Σ2

)
,

where Σ1 is an m × m matrix and Σ2 is an n × n matrix. Then note
that

Σ−1 =

(
Σ−1

1 0
0 Σ−1

2

)
,

and det Σ = det Σ1 det Σ2. Thus, if µ1 and µ2 are the mean vectors
of (X1, . . . , Xm) and Y = (Y1, . . . , Yn), then the p.d.f. of Z at a point
z = (x, y) (where z ∈ Rm+n, x ∈ Rm and y ∈ Rn) is

e−
1
2 (z−µ)TΣ−1(z−µ)

(2π)(m+n)/2(det Σ)1/2

=
e−

1
2 (x−µ1)

TΣ−1
1 (x−µ1)− 1

2 (y−µ2)
TΣ−1

2 (y−µ2)

(2π)(m+n)/2(det Σ1 det Σ2)1/2
.

The above expression is the product of the probability density func-
tions of N(µ1, Σ1) and N(µ2, Σ2) at x and y. This shows that X
and Y are independent random vectors, with X ∼ N(µ1, Σ1) and
Y ∼ N(µ2, Σ2).





The central limit theorem

Convergence in distribution

Let X1, X2, . . . be a sequence of random variables and X be another
random variable. Let Fn be the c.d.f. of Xn and F be the c.d.f. of X.
We say that Xn converges in distribution to X as n → ∞ if for every
x where F is continuous68, 68 The condition that x has to be a con-

tinuity point of F is needed to ensure
that we do not miss out ‘obvious’ ex-
amples. For instance, suppose that Xn
is 0 with probability 1/2 and 1 + 1/n
with probability 1/2. Then, as n → ∞,
it is clear that the distribution of Xn
should converge to Ber(1/2). How-
ever, Fn(1) = 1/2 for every n, whereas
F(1) = 1 (where F is the c.d.f. of
Ber(1/2)). With the given definition
of convergence in distribution, we can
avoid this problem, because 1 not a
continuity point of F. Indeed, in this
example, Fn(x) does converge to F(x)
for every continuity point of F.

lim
n→∞

Fn(x) = F(x). (22)

Sometimes we also write Xn → F in distribution, or Fn → F in distri-
bution. Note that when F is continuous (e.g. when X is a continuous
random variable), we need (22) to hold for all x.

When F is continuous, a consequence of convergence in distribu-
tion is that for every −∞ < a ≤ b < ∞,

lim
n→∞

P(a ≤ Xn ≤ b) = P(a ≤ X ≤ b).

To see this, first note that

P(a < Xn ≤ b) = P(Xn ≤ b)− P(Xn ≤ a)

→ P(X ≤ b)− P(X ≤ a) = P(a < X ≤ b).

On the other hand, for any ε > 0,

lim sup
n→∞

P(Xn = a) ≤ lim sup
n→∞

P(a− ε < Xn ≤ a)

= P(a− ε < X ≤ a) = F(a)− F(a− ε).

The left side does not depend on ε. So we can take ε→ 0 on the right,
and use the continuity of F to assert that P(Xn = a)→ 0. Thus,

P(a ≤ Xn ≤ b) = P(Xn = a) + P(a < Xn ≤ b)

→ P(a < X ≤ b) = P(a ≤ X ≤ b),

where the last identity follows, again, by the continuity of F.
We have already seen one example of convergence in distribution.

In Proposition 4, we showed that if Xn ∼ Bin(n, λ/n) and X ∼
Poi(λ), then for any integer k ≥ 0,

lim
n→∞

P(Xn = k) = P(X = k).
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Since Xn and X are both nonnegative integer-valued random vari-
ables, this shows that for any real number x ≥ 0,

lim
n→∞

P(Xn ≤ x) = lim
n→∞ ∑

0≤k≤x
P(Xn = k)

= ∑
0≤k≤x

lim
n→∞

P(Xn = k)

= ∑
0≤k≤x

P(X = k) = P(X ≤ x).

Thus, Xn → X in distribution.

Statement of the central limit theorem

The goal of this chapter is to prove the following important result69.69 The proof will be fully rigorous to the
extent possible without using measure
theory. To avoid certain complications,
we will work under the additional
assumption that E|Xi − µ|3 < ∞.

Theorem 5 (Central limit theorem). Let X1, X2, . . . be a sequence of
i.i.d. random variables with mean µ and variance σ2. For each n, let Sn =

X1 + · · ·+ Xn. Then, as n→ ∞, then random variable

Sn − nµ√
nσ

converges in distribution to a standard normal random variable. In particu-
lar, for any −∞ < a ≤ b < ∞,

lim
n→∞

P
(

a ≤ Sn − nµ√
nσ

≤ b
)
=
∫ b

a

1√
2π

e−x2/2dx.

The theorem says that when n is large, (Sn − nµ)/
√

nσ behaves
like a standard normal random variable, irrespective of the original
distribution of the Xi’s. Since a linear transformation of a normal
random variable is again normal, this is the same as saying that Sn

behaves approximately like a normal random variable with mean nµ

and variance nσ2. Indeed, a different way to write the conclusion of
the theorem is

lim
n→∞

P(nµ + a
√

nσ ≤ Sn ≤ nµ + b
√

nσ) =
∫ b

a

1√
2π

e−x2/2dx,

and the right side equals

P(nµ + a
√

nσ ≤ Zn ≤ nµ + b
√

nσ)

for any n, where Zn ∼ N(nµ, nσ2).
For a quick application, consider a fair coin tossed one million

times. Let X be the number of heads. Note that X is the sum of a
million i.i.d. random variables with mean 1/2 and variance 1/4.
So in this case nµ = 500000 and

√
nσ = 500. Therefore by the
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central limit theorem, (X− 500000)/500 behaves approximately like a
standard normal random variable. Numerical evaluation shows that∫ 2.576

−2.576

1√
2π

e−x2/2dx ≈ 0.99.

Now nµ − 2.576
√

nσ = 498712 and nµ + 2.576
√

nσ = 501288.
Therefore

P(498712 ≤ X ≤ 501288) ≈ 0.99.

Recall that we had previously shown using Chebyshev’s inequality
that

P(495000 ≤ X ≤ 505000) ≥ 0.99.

Therefore the central limit theorem not only gives a much narrower
interval, but it also ensures that the chance of X belonging to the
interval is actually close70 to 0.99 instead of just being lower bounded 70 How close? There is a quantitative

bound on the rate of convergence in
the central limit theorem, known as the
Berry–Esséen theorem, which gives an
answer to this question. We will not
discuss this here. For this particular
example, the best version of the Berry–
Esséen theorem says that the actual
probability is within ±0.00094 of 0.99.

by 0.99.
More generally, if Xn ∼ Bin(n, p), then (Xn − np)/

√
np(1− p)

converges in distribution to a standard normal random variable as
n → ∞. Note that there is no contradiction between this and our pre-
vious result that if n is large and p is small, then a Bin(n, p) random
variable behaves approximately like a Poi(λ) random variable with
λ = np. In that case, we implicitly took n → ∞ and also p → 0 such
that np→ λ. Here, we are fixing p and letting n→ ∞.

Preparation for the proof

Let g : R→ R be the function

g(x) =

e−1/x if x > 0,

0 if x ≤ 0.

Let g(k) denote the kth derivative of g. It is easy to see that for any k,
g(k)(x) = Pk(1/x)e−1/x, where Pk is a polynomial of degree k. Thus,

lim
x↓0

g(k)(x) = 0,

because e−1/x approaches zero must faster than Pk(1/x) blows up
to ∞ as x ↓ 0. Also, g(k)(x) remains bounded as x → ∞. Since g(k)

is continuous on (0, ∞), these two facts imply that g(k) is uniformly
bounded71 on (0, ∞). 71 Try to give a complete proof using

techniques from real analysis.Moreover, observe that since g(k)(x) = 0 for any x < 0, we get that
g(k) is well-defined and equals zero at x = 0.

To summarize, g belongs to the class C∞
b of functions on the real

line that are infinitely differentiable with bounded derivatives (in-
cluding the zeroth derivative, which is the function itself).
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Now take any −∞ < a < b < ∞, and let

ga,b(x) = g(x− a)g(b− x).

Then ga,b is also in C∞
b , and it is zero everywhere except in (a, b),

where it is strictly positive. Thus, if

Ca,b =
∫ ∞

−∞
ga,b(x)dx,

then Ca,b > 0, and if we define

ha,b(x) =
1

Ca,b
ga,b(x),

then ha,b is a probability density function. Let Ha,b be the correspond-
ing c.d.f. Since ha,b is zero outside (a, b) and strictly positive inside
(a, b), the function Ha,b equals 0 in (−∞, a], equals 1 in [b, ∞) and is
strictly increasing from 0 to 1 in (a, b). Moreover, Ha,b ∈ C∞

b . These
functions allow us to prove the following lemma.

Lemma 1. Let X be a random variable, and suppose that X1, X2, . . . is a
sequence of random variables (discrete or continuous) such that for each
f ∈ C∞

b , E( f (Xn))→ E( f (X)) as n→ ∞. Then Xn → X in distribution.

Proof. Let Fn be the c.d.f. of Xn and F be the c.d.f. of X. Take any
t ∈ R where F is continuous, and some s < t. The function 1 −
Hs,t defined above is everywhere less than or equal to the indicator
function 1(−∞,t]. Thus,

E(1− Hs,t(Xn)) ≤ E(1(−∞,t](Xn)) = Fn(t).

Since Hs,t ∈ C∞
b , this gives

lim inf
n→∞

Fn(t) ≥ lim
n→∞

E(1− Hs,t(Xn)) = E(1− Hs,t(X)).

On the other hand, 1− Hs,t is everywhere bigger than or equal to the
function 1(−∞,s]. This gives

E(1− Hs,t(X)) ≥ E(1(−∞,s](X)) = F(s).

Combining, we get

lim inf
n→∞

Fn(t) ≥ F(s).

Note that this holds for any s < t. Since F is continuous at t, we can
now take s ↑ t and get

lim inf
n→∞

Fn(t) ≥ F(t). (23)
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Working similarly with Ht,s for s > t, we get

lim sup
n→∞

Fn(t) ≤ lim
n→∞

E(1− Ht,s(Xn))

= E(1− Ht,s(X)) ≤ F(s).

Taking s ↓ t gives
lim sup

n→∞
Fn(t) ≤ F(t). (24)

Combining (23) and (24), we get72 72 Recall that it is a familiar technique
from real analysis to show that a
sequence of numbers xn converges to a
limit x by proving that lim supn→∞ xn ≤
x and lim infn→∞ xn ≥ x.

lim
n→∞

Fn(t) = F(t),

which proves that Xn → X in distribution.

The Lindeberg method

We will now prove the central limit theorem, under the additional
assumption that E|Xi − µ|3 < ∞. The proof technique is known as
Lindeberg’s method, which is also useful for various other problems.

Fix n. Define
Yi =

Xi − µ√
nσ

.

Then Y1, Y2, . . . , Yn are also i.i.d., with E(Yi) = 0 and E(Y2
i ) = 1/n.

Let

Tn =
n

∑
i=1

Yi =
Sn − nµ√

nσ
.

We have to show that Tn → Z in distribution, where Z ∼ N(0, 1). By
Lemma 1, it suffices to prove that for every f ∈ C∞

b ,

lim
n→∞

E( f (Tn)) = E( f (Z)). (25)

Accordingly, take any f ∈ C∞
b . Fix some n ≥ 1. Let Z1, . . . , Zn be

i.i.d. N(0, 1/n) random variables, so that we can write73 73 Recall that a linear combination of
normal random variables is again
normal, with appropriate mean and
variance.Z =

n

∑
i=1

Zi.

For i = 0, . . . , n, let

Ai = Y1 + · · ·+ Yi−1 + Yi + Zi+1 + · · ·+ Zn.

Note that A0 = Z and An = Tn. Thus74 74 This is known as a telescoping sum.

f (Tn)− f (Z) = f (An)− f (A0)

=
n

∑
i=1

( f (Ai)− f (Ai−1)). (26)
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Take any i. Let

Bi = Y1 + · · ·+ Yi−1 + Zi+1 + · · ·+ Zn,

so that
Ai = Bi + Yi, Ai−1 = Bi + Zi. (27)

Let C be a uniform upper bound on | f ′′′(x)|. Then by Taylor series
expansion, ∣∣∣∣ f (Ai)− f (Bi)−Yi f ′(Bi)−

Y2
i

2
f ′′(Bi)

∣∣∣∣ ≤ C|Yi|3
6

.

Therefore, by the inequality |E(X)| ≤ E|X|,∣∣∣∣E( f (Ai)− f (Bi)−Yi f ′(Bi)−
Y2

i
2

f ′′(Bi)

)∣∣∣∣
≤ E

∣∣∣∣ f (Ai)− f (Bi)−Yi f ′(Bi)−
Y2

i
2

f ′′(Bi)

∣∣∣∣ ≤ CE|Yi|3
6

.

Now note that Yi and Bi are independent. Thus75,75 Here we are implicitly using the
result that if X and Y are independent
random variables, then f (X) and g(Y)
are also independent for any functions
f and g. To see this, note that for any
sets A and B,

P( f (X) ∈ A, g(Y) ∈ B)

= P(X ∈ f−1(A), Y ∈ g−1(B))

= P(X ∈ f−1(A))P(Y ∈ g−1(B))

= P( f (X) ∈ A)P(g(Y) ∈ B).

E(Yi f ′(Bi)) = E(Yi)E( f ′(Bi)) = 0

and

E(Y2
i f ′′(Bi)) = E(Y2

i )E( f ′′(Bi)) =
E( f ′′(Bi))

n
.

Therefore, ∣∣∣∣E( f (Ai)− f (Bi)−
f ′′(Bi)

2n

)∣∣∣∣ ≤ CE|Yi|3
6

. (28)

By the same argument applied to Ai−1 instead of Ai, and using the
second equation in (27), we get∣∣∣∣E( f (Ai−1)− f (Bi)−

f ′′(Bi)

2n

)∣∣∣∣ ≤ CE|Zi|3
6

. (29)

From (28) and (29), it follows that

|E( f (Ai)− f (Ai−1))| ≤
C
6
(E|Yi|3 + E|Zi|3).

But E|Yi|3 = E|Y1|3 and E|Zi|3 = E|Z1|3. Therefore by the above
inequality and the telescoping sum (26), we get

|E( f (Tn))− E( f (Z))| ≤ C
6

n

∑
i=1

(E|Yi|3 + E|Zi|3)

=
Cn
6
(E|Y1|3 + E|Z1|3).

But
E|Y1|3 =

1
n3/2σ3 E|X1 − µ|3, E|Z1|3 =

1
n3/2 E|Z|3.

Thus, taking n → ∞, we get (25), which completes the proof of the
central limit theorem under the assumption that E|X1 − µ|3 is finite.
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The multivariate central limit theorem

The notion of convergence in distribution for random vectors is a bit
more complicated than that for random variables. There are many
equivalent definitions, one of which is the following. We say that a
sequence of random vectors X1, X2, . . . converges in distribution to a
random vector X if

lim
n→∞

P(Xn ∈ A) = P(X ∈ A) (30)

for any76 set A such that P(X ∈ ∂A) = 0, where ∂A denotes the 76 As usual, ‘any set’ means ‘any Borel
set’.boundary77 of A.
77 That is, the set of points which have
sequences converging to them from
both A and Ac.Theorem 6 (Multivariate central limit theorem). Let X1, X2, . . . be a

sequence of i.i.d. d-dimensional random vectors with mean vector µ and
covariance matrix Σ. For each n, let Sn = X1 + · · ·+ Xn. Then the random
vector n−1/2(Sn − nµ) converges in distribution to N(0, Σ).

The proof of this theorem goes exactly as the proof of the univari-
ate CLT via Lindeberg’s method. The first step is to show that for any
f ∈ C∞

b (Rd) (where C∞
b (Rd) is the set of all infinitely differentiable

maps from Rd into R with bounded derivatives of all orders),

lim
n→∞

E[ f (n−1/2(Sn − nµ))] = E[ f (Z)],

where Z ∼ N(0.Σ) The proof of this follows by Lindeberg’s method
using multivariate Taylor expansion78. To complete the proof, we 78 Try to fill in the details.

approximate the function 1A (where A is as in (30)) from above and
below by smooth functions, just as we approximated indicators of
intervals by the functions ha,b in the univariate case. It is a more
complicated here because A can be any set such that P(Z ∈ ∂A) = 0.
This is beyond the scope of this discussion. However, in the special
case when A is of the form [a1, b1]× · · · × [ad, bd] for some intervals
[a1, b1], . . . , [ad, bd], the approximations to 1A can be easily constructed
by considering functions like f (x1, . . . , xd) = f1(x1) · · · fd(xd), where
fi is a smooth approximation of 1[ai ,bi ]

.

Example: Number of points in a region

Let X1, X2, . . . be a sequence of i.i.d. random vectors distributed uni-
formly on the unit disk D = {(x, y) : x2 + y2 ≤ 1}. For each n, you
can view X1, . . . , Xn are a set of n points distributed independently
and uniformly in D.

Let T be the top half of D, that is

T = {(x, y) ∈ D : y ≥ 0}.
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Similarly, let Q be the top-right quarter of D, that is

Q = {(x, y) ∈ D : x ≥ 0, y ≥ 0}.

For each n, let An be the number of points among X1, . . . , Xn that fall
in T, and let Bn be the number points that fall in Q. Clearly, An ∼
Bin(n, 1/2) and Bn ∼ Bin(n, 1/4). So, for large n, the central limit
theorem tells us that An behaves like a N(n/2, n/4) random variable,
and Bn behaves like a N(n/4, 3n/16) random variable. What about
their joint distribution? To understand this, let us define for each i,

Yi = 1{Xi∈T}, Zi = 1{Xi∈Q}.

Then the pairs (Y1, Z1), (Y2, Z2), . . . are i.i.d. random vectors. A sim-
ple calculation shows that E(Yi) = E(Y2

i ) = 1/2, E(Zi) = E(Z2
i ) =

1/4, and E(YiZi) = 1/4. Thus, Var(Yi) = 1/4, Var(Zi) = 3/16, and
Cov(Yi, Zi) = 1/8. Since An = Y1 + · · ·+ Yn and Bn = Z1 + · · ·+ Zn,
the multivariate central limit theorem shows that for large n, the pair
(An, Bn) behaves like a bivariate normal random variable with mean
vector (n/2, n/4), and covariance matrix(

n/4 n/8
n/8 3n/16

)
.

More precisely, n−1/2(An − n/2, Bn − n/4) converges in distribution
to a bivariate normal random vector with mean zero and covariance
matrix (

1/4 1/8
1/8 3/16

)
.

Central limit theorem for sums of dependent random variables

Often in practice we encounter random variables that are sums of
dependent (instead of independent) random variables. For exam-
ple, consider the number of heads runs in a sequence of coin tosses.
We showed that it can be expressed as a sum of indicator random
variables, but those variables were not independent. There are many
ways to prove central limit theorems for sums of dependent random
variables. The following result, in combination with Lemma 1, is
applicable in a wide variety of problems79.79 This is a special case of the so-called

dependency graph approach for
proving central limit theorems. Usually
such results are proved using Stein’s
method. But since that is beyond the
scope of this discussion, a different —
and arguably simpler — proof is given
here.

Theorem 7. Let X1, . . . , Xn be random variables defined on the same
sample space. Suppose that for each i, there is a set of indices Ni containing
i such that Xi and the random vector (Xj)j/∈Ni

are independent. Suppose
moreover that there is a set of indices Mi ⊇ Ni such that the random
vectors (Xj)j∈Ni and (Xj)j 6∈Mi are indepedent. Take any f ∈ C∞

b . Let
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C be a number such that | f ′′(x)| and | f ′′′(x)| are ≤ C for all x. Let K
be a number such that the size of Mi is ≤ K for all i. Let L be a number
such that E|Xi − E(Xi)|3 ≤ L for all i. Let S = X1 + · · · + Xn and
σ2 = Var(S), and define

T =
S− E(S)

σ
.

Let Z ∼ N(0, 1). Then

|E( f (T))− E( f (Z))| ≤ 9πnCK2L
4σ3 .

To quickly see how this result implies the CLT for i.i.d. sums,
note that if X1, . . . , Xn are i.i.d., we can take Ni = {i}, which gives
K = 1. Also, in this case σ2 = nVar(X1). Plugging in these quantities
into the above bound, we get a bound of order n−1/2, which is the
same as what we got using Lindeberg’s method. We will see a more
nontrivial example in the next section.

The proof of Theorem 7 is divided into a number of steps. First,
define

Yi =
Xi − E(Xi)

σ
,

so that T = ∑n
i=1 Yi. Note that E(Yi) = 0 for each i. Let Z =

(Z1, . . . , Zn) be a normal random vector with mean zero and co-
variance matrix equal80 to the covariance matrix of Y = (Y1, . . . , Yn). 80 We know that this is possible since

we can construct a normal random
vector with covariance matrix equal to
any given positive definite matrix, and
the covariance matrix of any random
vector is positive definite. A small issue
we are skirting here is that Cov(Y)
may be positive semidefinite instead
of positive definite (that is, may have
a zero eigenvalue). This is actually not
a problem, because normal random
vectors are allowed to have singular
covariance matrices (although we did
not discuss that).

Note that the vector Z also has the properties that for each i, Zi

and (Zj)j/∈Ni
are independent, and (Zj)j∈Ni and (Zj)j/∈Mi

are inde-
pendent. This is because independence of normal random vectors is
guaranteed when covariances are zero, as we noted before.

Another important observation is that

E|Zi|3 ≤
3L
σ3 . (31)

To see this, first note that Zi is normal with mean zero and

Var(Zi) = Var(Yi) = E(Y2
i ).

But by Proposition 10,

E(Y2
i ) ≤ (E|Yi|3)2/3 ≤ L2/3

σ2 . (32)

An easy calculation shows that if X ∼ N(0, a2), then E|X|3 ≤ 3a3.
This gives (31).

Let V = Z1 + · · ·+ Zn. Then V ∼ N(0, 1). For each a, b ∈ [0, 1],
define

φ(a, b) = E( f (aT + bV)).

Our goal is to obtain an upper bound on |φ(1, 0)− φ(0, 1)|. We will
start by producing an upper bound for |φ(a, b)− φ(c, d)| for arbitrary
a, b, c, d ∈ [0, 1]. The following lemma is the first step in that direction.
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Lemma 2. Take any a, b, c, d ∈ [0, 1]. Let U = (a− c)T + (b− d)V. Then

|φ(a, b)− φ(c, d)− E(U f ′(cT + dV))| ≤ Cα

2
.

where α = (a− c)2 + (b− d)2.

Proof. By Taylor approximation and the fact that | f ′′| is uniformly
bounded by C, we get

| f (aT + bV)− f (cT + dV)−U f ′(cT + dV)| ≤ CU2

2
.

Since T and V are independent, E(T) = E(V) = 0, and E(T2) =

E(V2) = 1, we get E(U2) = α. This completes the proof of the
lemma.

Our next goal is to get an upper bound for the first order Taylor
approximation of φ(a, b)− φ(c, d) that we got from Lemma 2. First,
note that

E(U f ′(cT + dV)) =
n

∑
i=1

E(Ui f ′(cT + dV)),

where
Ui = (a− c)Yi + (b− d)Zi.

For each i, let

Ai = ∑
j∈Ni

(cYj + dZj), Bi = ∑
j/∈Ni

(cYj + dZj),

so that Ai + Bi = cT + dV. The following lemma gives a first approxi-
mation for E(Ui f ′(cT + dV)).

Lemma 3. For any i,

|E(Ui f ′(cT + dV))− E(Ui Ai f ′′(Bi))| ≤
3βCK2L

2σ3 ,

where β = max{|a− c|, |b− d|}.

Proof. Note that by the given conditions, Ui is independent of Bi.
Since E(Yi) = E(Zi) = 0, this gives

E(Ui f ′(Bi)) = 0.

Thus,

E(Ui f ′(cT + dV)) = E[Ui( f ′(cT + dV)− f ′(Bi))].
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Again by Taylor approximation,

| f ′(cT + dV)− f ′(Bi)− Ai f ′′(Bi)| ≤
CA2

i
2

.

Combining, we get

|E(Ui f ′(cT + dV))− E(Ui Ai f ′′(Bi))| ≤
C
2

E|Ui A2
i |.

Now, if we expand Ui A2
i using the distributive law, then we get a

sum of at most K2 terms, each of which is of the form θQ1Q2Q3,
where each Qi is either Yj or Zj for some j, and θ is one of the num-
bers (a− c)c, (a− c)d, (b− d)c and (b− d)d. By the arithmetic-mean-
geometric-mean (AM-GM) inequality,

|Q1Q2Q3| ≤
|Q1|3 + |Q2|3 + |Q3|3

3
.

By the assumption that E|Xj − E(Xj)|3 ≤ L and the inequality (31),
we get that E|Qi|3 ≤ 3L/σ3 for each i. Combining this with the fact
that |θ| ≤ max{|a − c|, |b − d|} (because c, d ∈ [0, 1]), we get the
desired bound.

Next, define

Ci = ∑
j∈Mi\Ni

(cYj + dZj), Di = ∑
j/∈Mi

(cYj + dZj),

so that Bi = Ci + Di. The following lemma gives a second approxima-
tion for E(Ui f ′(cT + dV)).

Lemma 4. For any i,

|E(Ui Ai f ′′(Bi))− E(Ui Ai)E( f ′′(Di))| ≤
3βCK2L

σ3 ,

where β = max{|a− c|, |b− d|}.

Proof. By the given assumptions, Ui Ai and Di are independent.
Therefore by Taylor approximation,

|E(Ui Ai f ′′(Bi))− E(Ui Ai)E( f ′′(Di))|
= |E(Ui Ai( f ′′(Bi)− f ′′(Di))|
≤ CE|Ui AiCi|.

We now expand Ui AiCi using the distributive law. We end up with
at most K2 terms, where each term is of the form θQ1Q2Q3, as in the
proof of the previous lemma. Bounding the terms in the same way,
we get the required bound.
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Finally, we obtain a bound on |E(Ui Ai)|.

Lemma 5. For any i,

|E(Ui Ai)| ≤
|γ|KL2/3

σ2

where γ = (a− c)c + (b− d)d.

Proof. Since the Yj’s and Zj’s are independent and have mean zero,

E(Ui Ai) = (a− c)c ∑
j∈Ni

E(YiYj) + (b− d)d ∑
j∈Ni

E(ZiZj).

But the E(YiYj) = E(ZiZj) by construction of Z. Therefore

E(Ui Ai) = γ ∑
j∈Ni

E(YiYj).

By the AM-GM inequality and the bound (32), we get

|E(YiYj)| ≤ E|YiYj| ≤
E(Y2

i ) + E(Y2
j )

2
≤ L2/3

σ2 .

Since the size of Ni is at most K, this gives the required bound.

Combining Lemmas 2, 3, 4 and 5, we get

|φ(a, b)− φ(c, d)|
≤ |φ(a, b)− φ(c, d)− E(U f ′(cT + dV))|

+
n

∑
i=1
|E(Ui f ′(cT + dV))− E(Ui Ai f ′′(Bi))|

+
n

∑
i=1
|E(Ui Ai f ′′(Bi))− E(Ui Ai)E( f ′′(Di))|

+
n

∑
i=1
|E(Ui Ai)E( f ′′(Di))|

≤ Cα

2
+

9nβCK2L
2σ3 +

n|γ|CKL2/3

σ2 ,

where α = (a − c)2 + (b − d)2, β = max{|a − c|, |b − d|}, an γ =

(a − c)c + (b − d)d. We will be interested in the special situation
where a2 + b2 = c2 + d2. The following lemma reduces the above
bound to a more convenient form in this scenario.

Lemma 6. Let a, b, c, d ∈ [0, 1] be such that a2 + b2 = c2 + d2. Then

|φ(a, b)− φ(c, d)| ≤ Cα

2
+

9nβCK2L
2σ3 +

nαCKL2/3

2σ2 ,

where α = (a− c)2 + (b− d)2 and β = max{|a− c|, |b− d|}.
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Proof. Let α and γ be as above. Since a2 + b2 = c2 + d2,

γ = (a− c)
(

c + a
2

+
c− a

2

)
+ (b− d)

(
d + b

2
+

d− b
2

)
=

1
2
(a2 − c2 − (a− c)2 + b2 − d2 − (b− d)2)

= −1
2
((a− c)2 + (b− d)2) = −α

2
.

The proof is completed by plugging this into the bound obtained
above.

We are now ready to complete the proof of Theorem 7.

Proof of Theorem 7. Take any integer m ≥ 1. Let ak = cos(πk/2m) and
bk = sin(πk/2m) for k = 0, 1, . . . , m. Then

|E( f (T))− E( f (V))| = |φ(1, 0)− φ(0, 1)|
= |φ(a0, b0)− φ(am, bm)|

≤
m−1

∑
k=0
|φ(ak, bk)− φ(ak+1, bk+1)|.

Since sin and cos are Lipschitz functions, |ak − ak+1| and |bk − bk+1|
are bounded by π/2m for every k. Therefore by Lemma 6 and the
above inequality,

|E( f (T))− E( f (V))| ≤ Cπ2

8m
+

9πnCK2L
4σ3 +

nπ2CKL2/3

8mσ2 .

But m is arbitrary. So we can now send m → ∞ and get the required
bound.

Example: Number of head runs

Let Sn be the number of head runs in n tosses of a p-coin. We have
seen that Sn can be expressed as

Sn =
n

∑
i=1

1Ai ,

where A1 is the event that toss 1 turns up heads, and for i ≥ 2, Ai is
the event that toss i is heads and toss i− 1 is tails. We will now prove
a central limit theorem for Sn. To put this problem in the framework
of Theorem 7, fix n and let Xi = 1Ai . Take

Ni = {1 ≤ j ≤ n : |j− i| ≤ 1}.

Then clearly, i ∈ Ni and Xi and (Xj)j/∈Ni
are independent. Next, let

Mi = {1 ≤ j ≤ n : |j− i| ≤ 2}.
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Again, it is clear that Mi ⊇ Ni, and (Xj)j∈Ni and (Xj)j/∈Mi
are inde-

pendent. Since the size of Mi is bounded above by 5 for each i, we
can take K = 5. Next, observe that E|Xi − E(Xi)|3 ≤ 1, which means
that we can take L = 1. Finally, an easy computation shows that

Var(Sn) =
n

∑
i=1

n

∑
j=1

Cov(Xi, Xj)

=
n

∑
i=1

Var(Xi) + 2
n−1

∑
i=2

Cov(Xi, Xi+1) + 2Cov(X1, X2)

= np(1− p)− 2(n− 2)p2(1− p)2 − 2p2(1− p).

If p is not 0 or 1 (which we may assume, to avoid trivialities), it can
be verified that

p(1− p) > 2p2(1− p)2.

Therefore the above formula shows that Var(Sn) behaves like a posi-
tive constant times n when n is large. Therefore by Theorem 7, we get
that for any f ∈ C∞

b ,

lim
n→∞

E( f (Tn)) = E( f (Z)),

where Z ∼ N(0, 1) and

Tn =
Sn − E(Sn)√

Var(Sn)
.

So, by Lemma 1, Tn → Z in distribution.



More about variance and covariance

The Cauchy–Schwarz inequality

Let X and Y be any two random variables. The following very useful
inequality is called the Cauchy–Schwarz inequality:

|E(XY)| ≤
√

E(X2)E(Y2).

To prove this, note that by the AM-GM inequality,

uv ≤ u2 + v2

2
(33)

for any u, v ≥ 0. Therefore, for any two nonnegative random vari-
ables U and V with E(U2) = E(V2) = 1, we have

E(UV) ≤ E(U2) + E(V2)

2
= 1. (34)

Now take any X and Y, and let

U =
|X|√
E(X2)

, V =
|Y|√
E(Y2)

.

Then U and V are nonnegative random variables with E(U2) =

E(V2) = 1. So we can apply (34). But that can be rewritten as

E|XY| ≤
√

E(X2)E(Y2).

Finally, the Cauchy–Schwarz inequality is obtained using |E(XY)| ≤
E|XY|.

A slightly different version of the Cauchy–Schwarz inequality,
for the covariance of two random variables X and Y, is obtained by
replacing X with X− E(X) and Y with Y− E(Y). This gives

|Cov(X, Y)| = |E[(X− E(X))(Y− E(Y))]

≤
√

E(X− E(X))2E(Y− E(Y))2

=
√

Var(X)Var(Y).
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Correlation

The correlation between two random variables X and Y is defined as

Cor(X, Y) =
Cov(X, Y)√

Var(X)Var(Y)
.

By the Cauchy–Schwarz inequality the correlation between any two
random variables is always a number between −1 and 1. It is not
difficult to show that the correlation is 1 if and only if one random
variable is an increasing linear function of the other, and −1 if and
only if one random variable is a decreasing linear function of the
other. The main step in proving this is that the difference between the
two sides of the AM-GM inequality (33) equals (u− v)2/2, which is
zero if and only if u = v. The remaining details are left to the reader.

Bivariate normal distribution

The distribution of a pair of jointly normal random variables (X, Y)
is called a bivariate normal distribution. Recall that a normal dis-
tribution is fully specified by its means and covariances. When the
dimension is two, we have means, two variances, and one covariance
(since covariance is symmetric). But the covariance can be expressed
as correlation times the product of the standard deviations. Thus, a
bivariate normal distribution is characterized by five parameters —
two means µ1 and µ2, two variances σ2

1 and σ2
2 , and one correlation,

usually denoted by ρ. We write (X, Y) ∼ N(µ1, µ2, σ2
1 , σ2

2 , ρ). The
covariance matrix is

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

Suppose that |ρ| < 1. Then Σ is invertible and

Σ−1 =
1

(1− ρ2)σ2
1 σ2

2

(
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

)
.

Also, det Σ = (1− ρ2)σ2
1 σ2

2 . Therefore, the p.d.f. of (X, Y) at a point
(x, y) is

fX,Y(x, y) =
exp

(
− σ2

2 (x−µ1)
2+σ2

1 (y−µ2)
2−2ρσ1σ2(x−µ1)(y−µ2)

2σ2
1 σ2

2 (1−ρ2)

)
2πσ1σ2

√
1− ρ2

.

An important and useful result that follows from the above formula
is the conditional distribution of Y given X = x. Since X ∼ N(µ1, σ2

1 ),
its p.d.f. at x is

fX(x) =
1√

2πσ1
exp

(
− (x− µ1)

2

2σ2
1

)
.
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Therefore,

fY|X=x(y) =
fX,Y(x, y)

fX(x)

=

exp
(
− σ2

2 ρ2(x−µ1)
2+σ2

1 (y−µ2)
2−2ρσ1σ2(x−µ1)(y−µ2)

2σ2
1 σ2

2 (1−ρ2)

)
√

2π(1− ρ2)σ2

=

exp
(
− (σ2ρ(x−µ1)−σ1(y−µ2))

2

2σ2
1 σ2

2 (1−ρ2)

)
√

2π(1− ρ2)σ2

=
1√

2π(1− ρ2)σ2
exp

(
−
(y− µ2 − ρσ2

σ1
(x− µ1))

2

2σ2
2 (1− ρ2)

)
.

This shows that given X = x, the conditional distribution of Y is
N(µ2 +

ρσ2
σ1

(x − µ1), σ2
2 (1− ρ2)). Note that the conditional mean is a

linear function of x and the conditional variance is a constant. Note
that the unconditional variance of Y is σ2

2 . Thus, the information that
X = x reduces the variance of Y by a factor of 1 − ρ2. If X and Y
are strongly correlated (meaning that ρ is close to 1), the variance is
reduced significantly. If, on the other hand, ρ is close to zero, there is
not much reduction.

The Efron–Stein inequality

We have seen that upper bounds on variances are crucial for proving
laws of large numbers. However, we have learnt only one method for
calculating or bounding a variance — express the random variable
as a sum of relatively simple random variables, and then express the
variance as the sum of covariances. In many complicated problems,
this is not possible (we will see an example soon). Fortunately, there
is a simple upper bound, known as the Efron–Stein inequality, that
is powerful enough to give useful upper bounds in a wide array of
very complex problems — for which there are essentially no other
ways of getting variance upper bounds81. 81 There is a whole area of probability

and analysis dedicated to understand-
ing fluctuations of complicated random
variables, known as concentration of
measure or concentration inequalities.
But as far as the order of fluctuations
is concerned, there are still many prob-
lems where the Efron–Stein inequality
gives the optimal or the (nearly) best
available result.

Theorem 8 (Efron–Stein inequality). Let X1, . . . , Xn be independent
random variables (or vectors), and let Y = f (X1, . . . , Xn) be a function
of these variables such that E(Y2) < ∞. Let X′1, . . . , X′n be independent
random variables (or vectors), independent of the Xi’s, such that for each i,
X′i has the same distribution as Xi. Then

Var(Y) ≤ 1
2

n

∑
i=1

E[(Y− f (X1, . . . , Xi−1, X′i , Xi+1, . . . , Xn))
2].
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Proof. For each i, let

X(i) = (X1, . . . , Xi−1, X′i , Xi+1, . . . , Xn),

and
X[i] = (X′1, . . . , X′i , Xi+1, . . . , Xn).

We also define X[0] = (X1, . . . , Xn). Then note that

Var(Y) = E(Y2)− (E(Y))2

= E(Y2)− E(Y f (X[n]))

= E[Y( f (X[0])− f (X[n]))].

We can write the above as a telescoping sum:

Var(Y) =
n

∑
i=1

E[Y( f (X[i−1])− f (X[i]))].

Take any i. The random variable Y( f (X[i−1])− f (X[i])) is a function
of the variables X1, . . . , Xn, X′1, . . . , X′n. Let us write it as

g(X1, . . . , Xn, X′1, . . . , X′n),

where g : R2n → R is the function

g(x1, . . . , xn, y1, . . . , yn)

= f (x1, . . . , xn)( f (y1, . . . , yi−1, xi, . . . , xn)− f (y1, . . . , yi, xi+1, . . . , xn)).

Now if we interchange Xi and X′i in g(X1, . . . , Xn, X′1, . . . , X′n), the
distribution of the resulting random variable remains unchanged. In
particular, its expected value should remain the same as before. The
random variable that comes out as a result of this interchange is

f (X(i))( f (X[i])− f (X[i−1])).

So, we get

E[Y( f (X[i−1])− f (X[i]))] = E[ f (X(i))( f (X[i])− f (X[i−1]))].

When two quantities are equal, their average is also the same quan-
tity. Averaging the two sides of the above display gives

1
2

E[(Y− f (X(i)))( f (X[i−1])− f (X[i]))].

Thus, we get

Var(Y) =
1
2

n

∑
i=1

E[(Y− f (X(i)))( f (X[i−1])− f (X[i]))].
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Applying the Cauchy–Schwarz inequality to each term on the right
gives

Var(Y) ≤ 1
2

n

∑
i=1

√
E(Y− f (X(i)))2E( f (X[i−1])− f (X[i]))2.

Now, the expression f (X[i−1])− f (X[i]) does not involve X1, . . . , Xi−1.
So if we replace X′1, . . . , X′i−1 in this expression by X1, . . . , Xi−1, its
distribution should remain unchanged. This implies that

E(Y− f (X(i)))2 = E( f (X[i−1])− f (X[i]))2.

Plugging this into the previous bound completes the proof.

Example: The traveling salesman problem

Let X1, . . . , Xn be i.i.d. uniform distributed points from the unit
square [0, 1]2, where n ≥ 2. In the traveling salesman problem,
we seek a path through these points that starts and ends at the same
vertex, and visits every vertex exactly once, such that the total length
is minimized subject to these constraints. Let Tn be the length of this
minimizing path. The goal of this section is to prove the following
law of large numbers for Tn.

Theorem 9. As n→ ∞, Tn/E(Tn)→ 1 in probability.

In other words, when n is large, Tn is very likely to be close to
its expected value, in the sense that the ratio of the two quantities
is very likely to be close to 1. Actually, we will show a bit more. We
will show that82 E(Tn) ≥ C1

√
n for some constant C1 that does 82 In fact, it is known that E(Tn)/

√
n

converges to a nonzero limit as n → ∞.
But we will not be able to prove that
here.

not depend on n, and we will show that Var(Tn) ≤ C2 where C2 is
another constant that does not depend on n. From these two results,
we get Var(Tn/E(Tn)) → 0 as n → ∞. Since E(Tn/E(Tn)) = 1 for
each n, this proves Theorem 9.

Fix n. For each i, let Di be the distance of Xi to its nearest neigh-
bor. among the other n− 1 points. The random variables D1, . . . , Dn

are not independent, but are identically distributed due to the sym-
metry of the situation.

Lemma 7. For each i,

E(D2
i ) ≤

72
πn

and E(Di) ≥
1

2
√

2πn
.

Proof. Since D1, . . . , Dn are identically distributed, it suffices to prove
the claim for i = 1. For x ∈ R2 and t > 0, let B(x, t) denote the
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Euclidean ball with center x and radius t. For x ∈ [0, 1]2 and 0 ≤ t ≤
1/2, it is not hard to see83 that the area of the region B(x, t) ∩ [0, 1]2 is83 There are at least two sides of the

square that are at distance ≥ 1/2 from
x, which means that at least one quarter
of B(x, t) must be contained in [0, 1]2.

bounded below by πt2/4. On the other hand, if 1/2 ≤ t ≤
√

2, then
t/3 ≤ 1/2, which implies that the area of B(x, t) ∩ [0, 1]2 is bounded
below by the area of B(x, t/3) ∩ [0, 1]2, which we know is bounded
below by πt2/36. For convenience, let us denote the constant π/36
by c.

Now take any x ∈ [0, 1]2. Since X1, . . . , Xn are independent, the
vectors X2, . . . , Xn, given X1 = x, are still i.i.d. and uniformly dis-
tributed on [0, 1]2. Thus, for any t ∈ [0,

√
2],

P(D1 ≥ t|X1 = x) = P(∩n
i=2{‖Xi − x‖ ≥ t})

= (P(‖X2 − x‖ ≥ t))n−1

= (1− area(B(x, t) ∩ [0, 1]2))n−1

≤ (1− ct2)n−1.

Therefore, by the law of total probability for continuous random
variables,

P(D1 ≥ t) =
∫
[0,1]2

P(D1 ≥ t|X = x)dx ≤ (1− ct2)n−1.

If t ≥
√

2, the probability is zero since no two points in the unit cube
can be at a distance greater than

√
2 from each other. Thus, by the tail

integral formula for expectation,

E(D2
1) =

∫ ∞

0
2tP(D1 ≥ t)dt

≤
∫ ∞

0
2t(1− ct2)n−1dt.

Using the inequality 1− x ≤ e−x that holds84 for x ≥ 0, we get84 The two functions are equal at x = 0
and the derivative of 1− x is dominated
by the derivative of e−x for all x ≥ 0.
When x ≥ 1, the inequality is trivial.

E(D2
1) ≤

∫ ∞

0
2te−c(n−1)t2

dt =
1

c(n− 1)
≤ 2

cn
,

where the last inequality holds because n ≥ 2. This proves the de-
sired upper bound.

On the other hand, by the inequality (1 − x)m ≥ 1 − mx that
holds85 for all x ≥ 0 and positive integers m,85 Again, check using derivatives.

P(D1 ≥ t) ≥ (1− area(B(x, t)))n−1

= (1− πt2)n−1 ≥ 1− π(n− 1)t2.

By Markov’s inequality, this gives

E(D1) ≥ tP(D1 ≥ t) ≥ t(1− π(n− 1)t2).

Taking t = (2π(n− 1))−1/2, we get

E(D1) ≥
1

2
√

2π(n− 1)
≥ 1

2
√

2πn
,
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which proves the required lower bound.

The next lemma provides the first half of the argument for the
proof of Theorem 9.

Lemma 8. For any n,

E(Tn) ≥
√

n
2
√

2π
.

Proof. Let us fix a specific direction for traversing the optimal path.
Then for Xi, there is a ‘next point’ on the path. Let us call it Ni.
(Note that Ni is one of the other Xj’s, but we do not care which one.)
Clearly, ‖Xi − Ni‖ ≥ Di, and

Tn =
n

∑
i=1
‖Xi − Ni‖.

Therefore by Lemma 7,

E(Tn) ≥
n

∑
i=1

E(Di) ≥
n

2
√

2πn
,

which completes the proof.

The second half of the argument for Theorem 9 is provided by the
next lemma, which is proved using the Efron–Stein inequality.

Lemma 9. For any n,

Var(Tn) ≤
144
π

.

Proof. Fix n and take any 1 ≤ i ≤ n. Let T′n be the length of the new
optimal path if we replace Xi by a new random vector X′i , which is
also uniformly distributed on [0, 1]2 and is independent of X1, . . . , Xn.
With the goal of applying the Efron–Stein inequality, we want to get
an upper bound for E(Tn − T′n)2. We do it in two steps. Let Rn be the
length of the optimal path if we erase Xi and do not replace it with a
new point. Then by the inequality86 (x + y)2 ≤ 2x2 + 2y2, we get 86 Expand (x + y)2 and apply AM-GM

to the cross-term.

E(Tn − T′n)
2 ≤ 2E(Tn − Rn)

2 + 2E(Rn − T′n)
2.

But by the symmetry between Xi and X′i , the two terms on the right
must be equal. Therefore

E(Tn − T′n)
2 ≤ 4E(Tn − Rn)

2. (35)

As before, let Ni be the point that comes after Xi in the optimal path,
and now also let Pi be the point that comes before Xi. When we
delete Xi, we can always find a path through the remaining n − 1
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points that is shorter than the old path, by declaring that Ni comes
after Pi, keeping all else the same. Thus, Rn ≤ Tn.

On the other hand, consider the optimal path through the remain-
ing n− 1 points, which we will henceforth call the ‘second path’. Let
Yi be the nearest neighbor of Xi among the other n − 1 points. Let
Zi be the point that comes after Yi in the second path. Let us create
a third path by redirecting the second path from Yi to Xi and then to
Zi. This third path is a path through all n points, and it exceeds the
length of the second path by

‖Xi −Yi‖+ ‖Zi − Xi‖ − ‖Zi −Yi‖.

This, by the triangle inequality, is bounded above by

2‖Xi −Yi‖+ ‖Zi −Yi‖ − ‖Zi −Yi‖ = 2‖Xi −Yi‖ = Di.

Thus, Tn ≤ Rn + Di. Combining this with our previous observation
that Rn ≤ Tn, we get |Tn − Rn| ≤ Di. Therefore by Lemma 7 and (35),

E(Tn − T′n)
2 ≤ 4E(D2

i ) ≤
288
πn

.

Summing over i = 1, . . . , n, dividing by 2, and applying the Efron–
Stein inequality completes the proof.

As discussed before, Lemmas 8 and 9 jointly complete the proof of
Theorem 9.

Incidentally, it is an open problem to prove a central limit theorem
for Tn. It is believed (folklore) that Tn − E(Tn) should converge in
distribution to N(0, σ2) for some σ2 > 0 as n → ∞. The key obstacle
to proving this is that we do not know how to show that the optimal
path does not change much if a small number of points (or even one
point) are shifted to new locations. It is conjectured that the optimal
path has this kind of stability.
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