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Interacting particles

I Systems of particles governed by joint stochastic differential
equations.

I Drift of each particle depends on its relative position with respect to
other particles.

I Continuous drifts: classical case (McKean-Vlasov).

I Completely different problem if drifts are prone to abrupt changes.
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Example: The Atlas model

I X1, . . . ,Xn are n diffusive particles, starting from zero.

I At each point of time, the lowest one gets a fixed upward drift.

I Formally,
dXi (t) = δi (t)dt + dBi (t),

where

δi (t) =

{
1 if Xi (t) = minj Xj(t),

0 otherwise,

and B1, . . . ,Bn are independent Brownian motions.

I Occurs in finance (Banner, Fernholz & Karatzas ’05). Uses reflecting
Brownian motions and the Harrison-Williams machinery. More later.
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Another example

I Again, X1, . . . ,Xn are n Brownian particles starting from zero.

I At any point of time, the particle that is farthest from zero has a
unit drift towards zero.

I Same definition in Rd .

I Question: What is the stationary distribution of this system?

I Cannot use RBM tools in d ≥ 2.
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A snapshot from the stationary law (n = 10, 000)
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Explicit description for finite n

I Generate U1, . . . ,Un i.i.d. uniformly from unit ball in Rd .

I Let Vi = Ui/maxj ‖Uj‖, i = 1, . . . , n.

I Generate Γ ∼ Gamma(nd , 1) independently.

I Let

Yi =
1

2
ΓVi , i = 1, . . . , n.

Then (Y1, . . . ,Yn) follows the stationary distribution of our system.
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Solution in d = 1

I We have
dXi (t) = δi (t)dt + dBi (t),

where

δi (t) =


1 if |Xi (t)| = maxj |Xj(t)|, Xi (t) < 0,

−1 if |Xi (t)| = maxj |Xj(t)|, Xi (t) > 0,

0 otherwise.

I Alternatively,
dX(t) = −∇k(X(t))dt + dB(t),

where k(x) = maxi |xi |.
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Contd...

Proposition
Consider the s.d.e.

dX(t) = −∇k(X(t))dt + dB(t),

where k is any absolutely continuous function. Assume that exp(−2k(x))
is integrable and ∫

Rn

‖∇k(x)‖2e−2k(x)dx <∞.

Then the probability distribution given by the un-normalized density
exp(−2k(x)) provides a reversible, invariant probability distribution µ for
the process X(t). Under some further conditions (...), the law of X(t)
converges to µ in TV.
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Contd...

I So in our problem, k is the Minkowski norm of the unit cube, and
the stationary density is ∝ e−2 maxi |xi |.

Lemma
If k is the Minkowski norm of a convex set C ⊆ Rn, then picking from
exp(−2k(x)) is the same as: Picking U ∼ Unif (C ) → dividing by 2k(U)
→ multiplying by independent Gamma(n, 1).

I Proof is simple, using “polar coordinates” induced by C .

I Picking from Unif (C ) is can be handled theoretically if C can be
easily triangulated, e.g. if C is a simplicial polytope.
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Simplicial polytopes

Each (n − 1)-dimensional face is a simplex.
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I C = ∪d
j=1Cj ; simplices Cj .

I Let Xj ∼ Unif (Cj).

I P(Π = j) = Vol(Cj)/Vol(C ).

X =
∑d

j=1 Xj I(Π = j) ∼ Unif (C ).

Γ

2k(X)
X =

Γ

2k(Xj)
Xj , if Π = j .

Γ

2k(Xj)
Xj - affine transformation of IID Exponentials.
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Solving the Atlas model

I Recall:
dXi (t) = δi (t)dt + dBi (t),

where

δi (t) =

{
1 if Xi (t) = minj Xj(t),

0 otherwise.

I Here k(x) = −mini xi .

I This k is not the Minkowski norm of any convex set. Nor is
exp(−2k(x)) integrable.

I The process does not converge to a stationary law.
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Atlas model contd...

I Although k(x) = −mini xi is not a Minkowski norm, it is so when
restricted to

∑
i xi = 0. On this hyperplane, it is the norm induced

by a regular simplex.
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Figure: Level sets of k(x) and their intersection with {x :
P

xi = 0}
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Atlas model contd...

I So, we project the process on to {x :
∑

xi = 0} and apply previous
result. This gives the stationary law of

(X1(t)− X̄ (t), . . . ,Xn(t)− X̄ (t)).

I Explicit description: Generate i.i.d. exponential r.v.’s with mean n/2
and subtract off the mean.

I Obtained by Banner-Fernholz-Karatzas ’05, and Pitman (tech.
report). Both use Harrison-Williams RBM tools.

I General rank-dependent drifts: Stated as a major open problem in
BFK ’05. Solved by Pitman (tech. report). Easy solution by the
following general result...
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A general theorem

Theorem (C. & Pal ’06)
Start with k : Rn → R.

dX(t) = −∇k(X(t))dt + dB(t).

Suppose there exists a subspace H such that

I k(x) = k1(y) + k2(z), y = PH(x), z = x − y.

I k1 ≥ 0, cont., positively homogenous.

I {x ∈ H : k1(x) = 0} = {0}.
Then

I Y (t) = PHX (t) =⇒ unique stationary distribution.
Density ∝ exp(−2k1(y)). Can be generated using earlier trick.

I Exponentially fast. Reversible when stationary.

Example: −min xi = −min(xi − x̄)− x̄ , H = {x : x̄ = 0}.

Sourav Chatterjee & Soumik Pal Convex polytopes, interacting particles, spin glasses, and finance



Some finance

I Equity market with n stocks.

I For the ith stock (company), define

I capital, Si = number of outstanding shares × share price
I market weight,

µi =
capital of ith stock

total capital
=

SiP
j Sj

.

I Capital distribution curve = log-log plot of µ versus rank.

I Ordered market wts: µ(1) ≤ µ(2) ≤ . . . ≤ µ(n).
I Plot log k versus log µ(n−k+1).

I Economic theory (e.g. Simon ’55) predicts that capital distribution
curve should be a straight line.

I In reality, the curve is concave and remarkably stable in time.
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Real data
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Figure 1: Capital distribution curves: 1929–1999

cesses represented by continuous semimartingales (see, e.g., Duffie (1992) or Karatzas and Shreve
(1998)). The representation of market weights in terms of continuous semimartingales is straight-
forward, but in order to represent the ranked market weights, it is necessary to use semimartingale
local times to capture the behavior when ranks change. The methodology for this analysis was
developed in Fernholz (2001), and is outlined here in an Appendix. By using the representation of
ranked market weights given in Fernholz (2001), we are able to determine the asymptotic behavior
of the capital distribution. For a market with a stable capital distribution, this asymptotic behavior
provides insight into the steady-state structure of the market.

We shall assume that we operate in a continuously-traded, frictionless market in which the stock
prices vary continuously and the companies pay no dividends. We assume that companies neither
enter nor leave the market, nor do they merge or break up, and that the total number of shares of a
company remains constant. Shares of stock are assumed to be infinitely divisible, so we can assume
without loss of generality that each company has a single share of stock outstanding.

Section 2 of the paper contains some basic definitions and results regarding the basic market
model that we use. In Section 3 we present a model for a stable capital distribution, and we apply
this model to the U.S. equity market in Section 4. Section 5 is a summary, and the Appendix
contains some technical mathematical results that we need in the other sections.

2 The market model

In this section we introduce the general market model that we shall use in the rest of the paper. This
model is consistent with the usual market models of continuous-time mathematical finance, found
in, e.g., Duffie (1992) or Karatzas and Shreve (1998), but follows the logarithmic representation used
in, e.g., Fernholz (1999).

Consider a family of n stocks represented by their price processes X1, . . . , Xn. We assume that

2

I log k versus log µ(n−k+1).

I Dec 31, 1929 - 1999.

I Includes all NYSE, AMEX, and

NASDAQ.

Sourav Chatterjee & Soumik Pal Convex polytopes, interacting particles, spin glasses, and finance



Attempted explanations

I Jovanovic (’82), Hopenhayn (’92), Axtell (’99), Hashemi (’00), Kou
& Kou (’01).

I However, they all assume that the market converges rapidly to
equilibrium, which is never true in reality!

I BFK’s Atlas model tries to correct that, but recovers classical curve
(straight line).
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Stochastic modeling

I Log-capital: Xi = log Si .

I Black-Scholes: Log-capital of a single company is modeled as a
Brownian motion with drift.

I Natural extension for whole market: Log-capitals of all companies
modeled as interacting particles on R.

I Empirical observation: Larger stocks have slower upward mobility
than smaller stocks.

I One way to model this: The interacting particles (log-capitals) pull
each other by a “gravitational force”.
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We propose: The Gravity Model

I Let Xi (t), i = 1, . . . , n be the log-capitals at time t.

I ‘Gravitational force’ between i and j is proportional to sign(Xi −Xj).

I Resulting model:

dXi (t) = −α
n

n∑
j=1

sign(Xi (t)− Xj(t))dt + dBi (t), i = 1, . . . , n.

I Represents a toy model of flow of capital from larger to smaller
stocks. The parameter α determines the strength of the flow.
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Capital distribution: Reality vs. Gravity model

Real data (left) vs. simulations from gravity model with α = 1/2 (right).
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Figure 1: Capital distribution curves: 1929–1999

cesses represented by continuous semimartingales (see, e.g., Duffie (1992) or Karatzas and Shreve
(1998)). The representation of market weights in terms of continuous semimartingales is straight-
forward, but in order to represent the ranked market weights, it is necessary to use semimartingale
local times to capture the behavior when ranks change. The methodology for this analysis was
developed in Fernholz (2001), and is outlined here in an Appendix. By using the representation of
ranked market weights given in Fernholz (2001), we are able to determine the asymptotic behavior
of the capital distribution. For a market with a stable capital distribution, this asymptotic behavior
provides insight into the steady-state structure of the market.

We shall assume that we operate in a continuously-traded, frictionless market in which the stock
prices vary continuously and the companies pay no dividends. We assume that companies neither
enter nor leave the market, nor do they merge or break up, and that the total number of shares of a
company remains constant. Shares of stock are assumed to be infinitely divisible, so we can assume
without loss of generality that each company has a single share of stock outstanding.

Section 2 of the paper contains some basic definitions and results regarding the basic market
model that we use. In Section 3 we present a model for a stable capital distribution, and we apply
this model to the U.S. equity market in Section 4. Section 5 is a summary, and the Appendix
contains some technical mathematical results that we need in the other sections.

2 The market model

In this section we introduce the general market model that we shall use in the rest of the paper. This
model is consistent with the usual market models of continuous-time mathematical finance, found
in, e.g., Duffie (1992) or Karatzas and Shreve (1998), but follows the logarithmic representation used
in, e.g., Fernholz (1999).

Consider a family of n stocks represented by their price processes X1, . . . , Xn. We assume that
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Analysis

I Here

k(x) =
α

n

n∑
i,j=1

|xi − xj |.

I k(x) is not the Minkowski norm of any convex set in Rn. Also,
exp(−2k(x)) is not integrable.

I However, k(x) is the Minkowski norm of a polytope when restricted
to H = {x :

∑
xi = 0}.

I The polytope is regular and simplicial. Uniform generation is easy to
describe.
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Stationary distribution

I X(t) does not converge in law. However,

(X1(t)− X̄ (t), . . . ,Xn(t)− X̄ (t))

does converge to an equilibrium measure.

I Suppose (Y1, . . . ,Yn) is drawn from this limiting distribution. Let
Y(1) ≤ · · · ≤ Y(n) denote the Yi ’s arranged in increasing order.

I Let ∆i = Y(i+1) − Y(i). Then ∆1, . . . ,∆n−1 are independent, and

∆i ∼ Exp

(
2αi(n − i)

n

)
.

I Each possible ordering corresponds to one face of the polytope.
Simplicial polytope ⇒ exponentials.
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Phase transition in the gravity model

I Recall: Market weight of ith company is

µi (t) =
capital of ith stock

total capital
=

eXi (t)∑
j eXj (t)

.

I Market diversity, as defined by Fernholz (’99):

µ(n)(t) := max
i
µi (t) ∈ [0, 1].

I Under the gravity model, this has a limiting distribution as t →∞.
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Phase transition contd...

Theorem
Consider the gravity model with strength parameter α:

dXi (t) = −α
n

n∑
j=1

sign(Xi (t)− Xj(t))dt + dBi (t), i = 1, . . . , n.

Let µ(n) denote the diversity in equilibrium. Then as n→∞,

I If α > 1/2, then µ(n) ∼ n−(2α−1)/2α. Diversity exists.

I If α = 1/2 then µ(n) ∼ (log n)−1. Diversity exists to a lesser extent.

I If α < 1/2, then µ(n) 6→ 0. No diversity.
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Sketch of proof

I µ(n) can be written as

1

1 + e−ξ1 + e−(ξ1+ξ2) + · · ·+ e−(ξ1+···+ξn−1)
,

where ξi ∼ Exp(2αi(n − i)/n).

I When i � n,

E(ξ1 + · · ·+ ξi ) ∼
log i

2α
.

I Vague intuition:

µ(n) ∼
1

1 + 2−1/2α + 3−1/2α + · · · n−1/2α
∼


n−(2α−1)/2α if α > 1/2,

(log n)−1 if α = 1/2,

const. if α < 1/2.

I Rigorous proof via martingales and Poincaré inequalities.
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Connection with spin glasses

I Let Σ be the set of possible configurations of a physical system.

I Let {Zσ, σ ∈ Σ} be a fixed collection of i.i.d. gaussian random
variables.

I Derrida’s Random Energy Model (REM) assigns a probability
measure on Σ by putting mass ∝ exp(βZσ) at each σ ∈ Σ.

I Exhibits phase transition as β varies. Mathematical reason is the
same as for the gravity model phase transition.

I More complex models of spin glasses assume that the Zσ’s have
some correlation structure. Similar to more complex versions of the
gravity model.
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A generalized gravity model

I Gravity model on a graph G = (V ,E ):

dXi (t) = −α
∑

j :(i,j)∈E

sign(Xi (t)− Xj(t))dt + dBi (t).

I As before, (X1(t)− X̄ (t), . . . ,Xn(t)− X̄ (t)) converges to a
stationary law. Polytope is simplicial but not regular.

I Let (Y1, . . . ,Yn) be a draw from the stationary distribution. Let
Y(1) ≤ · · · ≤ Y(n) be the ordered sample.

I Let Πi = the index j such that Y(i) = Yj .
I For each π ∈ Sn and 1 ≤ i ≤ n − 1, let

fi (π) = #{(j , k) : j ≤ i < k , (πj , πk) ∈ E}.

I Then P(Π = π) ∝ (
∏n−1

i=1 fi (π))−1.
I Given Π = π, the increments Y(i+1) − Y(i) are independent and

Y(i+1) − Y(i) ∼ Exp(2αfi (π)).
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